Linearization of differential inclusions
Serdica Mathematical Journal, Tome 49 (2023) no. 1–3, pp. 187-204
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
In this paper we extend the approach of Dubovickiĭ and Miljutin for linearization of the dynamics of smooth control systems to a non-smooth setting. We consider dynamics governed by a differential inclusion and we study the Clarke tangent cone to the set of all admissible trajectories starting from a fixed point. Our approach is based on the classical Filippov’s theorem and on the important property “subtransversality” of two closed sets.
Keywords:
tangential transversality, nonseparation result, Lagrange multiplier rule, 34A12, 46N10, 47J22
@article{SMJ2_2023_49_1_3_a9,
author = {Bivas, Mira and Krastanov, Mikhail and Ribarska, Nadezhda},
title = {Linearization of differential inclusions},
journal = {Serdica Mathematical Journal},
pages = {187--204},
publisher = {mathdoc},
volume = {49},
number = {1{\textendash}3},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2023_49_1_3_a9/}
}
TY - JOUR AU - Bivas, Mira AU - Krastanov, Mikhail AU - Ribarska, Nadezhda TI - Linearization of differential inclusions JO - Serdica Mathematical Journal PY - 2023 SP - 187 EP - 204 VL - 49 IS - 1–3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SMJ2_2023_49_1_3_a9/ LA - en ID - SMJ2_2023_49_1_3_a9 ER -
Bivas, Mira; Krastanov, Mikhail; Ribarska, Nadezhda. Linearization of differential inclusions. Serdica Mathematical Journal, Tome 49 (2023) no. 1–3, pp. 187-204. http://geodesic.mathdoc.fr/item/SMJ2_2023_49_1_3_a9/