Linearization of differential inclusions
Serdica Mathematical Journal, Tome 49 (2023) no. 1–3, pp. 187-204.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper we extend the approach of Dubovickiĭ and Miljutin for linearization of the dynamics of smooth control systems to a non-smooth setting. We consider dynamics governed by a differential inclusion and we study the Clarke tangent cone to the set of all admissible trajectories starting from a fixed point. Our approach is based on the classical Filippov’s theorem and on the important property “subtransversality” of two closed sets.
Keywords: tangential transversality, nonseparation result, Lagrange multiplier rule, 34A12, 46N10, 47J22
@article{SMJ2_2023_49_1_3_a9,
     author = {Bivas, Mira and Krastanov, Mikhail and Ribarska, Nadezhda},
     title = {Linearization of  differential inclusions},
     journal = {Serdica Mathematical Journal},
     pages = {187--204},
     publisher = {mathdoc},
     volume = {49},
     number = {1{\textendash}3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2023_49_1_3_a9/}
}
TY  - JOUR
AU  - Bivas, Mira
AU  - Krastanov, Mikhail
AU  - Ribarska, Nadezhda
TI  - Linearization of  differential inclusions
JO  - Serdica Mathematical Journal
PY  - 2023
SP  - 187
EP  - 204
VL  - 49
IS  - 1–3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2023_49_1_3_a9/
LA  - en
ID  - SMJ2_2023_49_1_3_a9
ER  - 
%0 Journal Article
%A Bivas, Mira
%A Krastanov, Mikhail
%A Ribarska, Nadezhda
%T Linearization of  differential inclusions
%J Serdica Mathematical Journal
%D 2023
%P 187-204
%V 49
%N 1–3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2023_49_1_3_a9/
%G en
%F SMJ2_2023_49_1_3_a9
Bivas, Mira; Krastanov, Mikhail; Ribarska, Nadezhda. Linearization of  differential inclusions. Serdica Mathematical Journal, Tome 49 (2023) no. 1–3, pp. 187-204. http://geodesic.mathdoc.fr/item/SMJ2_2023_49_1_3_a9/