Coefficient estimates for some generalized subclasses of analytic functions with respect to symmetric and conjugate points
Serdica Mathematical Journal, Tome 48 (2023) no. 4

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper, we introduce certain unified subclasses of close-to-convex functions and quasi-convex functions with respect to symmetric and conjugate points in the unit disc \(E=\left\{z\in\mathbb{C}:\mid z \mid<1\right\}\) and establish the upper bounds of the first four coefficients for these classes. This study will work as a motivation for the other researchers in this field to study some more similar classes.
Keywords: univalent functions, close-to-convex functions, starlike functions with respect to symmetric points, subordination, conjugate points, coefficient bounds, 30C45, 30C50
@article{SMJ2_2023_48_4_a1,
     author = {Singh, Gagandeep and Singh, Gurcharanjit},
     title = {Coefficient estimates for some generalized subclasses of analytic functions with respect to symmetric and conjugate points},
     journal = {Serdica Mathematical Journal},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2023_48_4_a1/}
}
TY  - JOUR
AU  - Singh, Gagandeep
AU  - Singh, Gurcharanjit
TI  - Coefficient estimates for some generalized subclasses of analytic functions with respect to symmetric and conjugate points
JO  - Serdica Mathematical Journal
PY  - 2023
VL  - 48
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2023_48_4_a1/
LA  - en
ID  - SMJ2_2023_48_4_a1
ER  - 
%0 Journal Article
%A Singh, Gagandeep
%A Singh, Gurcharanjit
%T Coefficient estimates for some generalized subclasses of analytic functions with respect to symmetric and conjugate points
%J Serdica Mathematical Journal
%D 2023
%V 48
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2023_48_4_a1/
%G en
%F SMJ2_2023_48_4_a1
Singh, Gagandeep; Singh, Gurcharanjit. Coefficient estimates for some generalized subclasses of analytic functions with respect to symmetric and conjugate points. Serdica Mathematical Journal, Tome 48 (2023) no. 4. http://geodesic.mathdoc.fr/item/SMJ2_2023_48_4_a1/