Coefficient estimates for some generalized subclasses of analytic functions with respect to symmetric and conjugate points
Serdica Mathematical Journal, Tome 48 (2023) no. 4
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
In this paper, we introduce certain unified subclasses of close-to-convex functions and quasi-convex functions with respect to symmetric and conjugate points in the unit disc \(E=\left\{z\in\mathbb{C}:\mid z \mid<1\right\}\) and establish the upper bounds of the first four coefficients for these classes. This study will work as a motivation for the other researchers in this field to study some more similar classes.
Keywords:
univalent functions, close-to-convex functions, starlike functions with respect to symmetric points, subordination, conjugate points, coefficient bounds, 30C45, 30C50
@article{SMJ2_2023_48_4_a1,
author = {Singh, Gagandeep and Singh, Gurcharanjit},
title = {Coefficient estimates for some generalized subclasses of analytic functions with respect to symmetric and conjugate points},
journal = {Serdica Mathematical Journal},
publisher = {mathdoc},
volume = {48},
number = {4},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2023_48_4_a1/}
}
TY - JOUR AU - Singh, Gagandeep AU - Singh, Gurcharanjit TI - Coefficient estimates for some generalized subclasses of analytic functions with respect to symmetric and conjugate points JO - Serdica Mathematical Journal PY - 2023 VL - 48 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SMJ2_2023_48_4_a1/ LA - en ID - SMJ2_2023_48_4_a1 ER -
%0 Journal Article %A Singh, Gagandeep %A Singh, Gurcharanjit %T Coefficient estimates for some generalized subclasses of analytic functions with respect to symmetric and conjugate points %J Serdica Mathematical Journal %D 2023 %V 48 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SMJ2_2023_48_4_a1/ %G en %F SMJ2_2023_48_4_a1
Singh, Gagandeep; Singh, Gurcharanjit. Coefficient estimates for some generalized subclasses of analytic functions with respect to symmetric and conjugate points. Serdica Mathematical Journal, Tome 48 (2023) no. 4. http://geodesic.mathdoc.fr/item/SMJ2_2023_48_4_a1/