Application of Lie symmetries to solving modified Black-Scholes equation
Serdica Mathematical Journal, Tome 48 (2022) no. 4, pp. 219-234
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
We perform Lie symmetry analysis on the modified Black-Scholes model described as a partial differential equation (PDE). As a result, a new complete Lie symmetry group and infinitesimal generators of the one-dimensional modified fractional Black-Scholes model are derived. Furthermore, we compute a family of exact invariant solutions that constitute the modified fractional Black-Scholes model using the associated infinitesimal generators and the corresponding similarity reduction equations. Using known solutions, more solutions are generated via group point transformations.
Keywords:
Lie point symmetries, modified Black-Scholes, financial mathematics, Lie algebra, invariant solution, 35-XX
@article{SMJ2_2022_48_4_a1,
author = {Ramoeletsi, Realeboha and Kaibe, Bosiu and Nchejane, Ngaka},
title = {Application of {Lie} symmetries to solving modified {Black-Scholes} equation},
journal = {Serdica Mathematical Journal},
pages = {219--234},
year = {2022},
volume = {48},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2022_48_4_a1/}
}
TY - JOUR AU - Ramoeletsi, Realeboha AU - Kaibe, Bosiu AU - Nchejane, Ngaka TI - Application of Lie symmetries to solving modified Black-Scholes equation JO - Serdica Mathematical Journal PY - 2022 SP - 219 EP - 234 VL - 48 IS - 4 UR - http://geodesic.mathdoc.fr/item/SMJ2_2022_48_4_a1/ LA - en ID - SMJ2_2022_48_4_a1 ER -
Ramoeletsi, Realeboha; Kaibe, Bosiu; Nchejane, Ngaka. Application of Lie symmetries to solving modified Black-Scholes equation. Serdica Mathematical Journal, Tome 48 (2022) no. 4, pp. 219-234. http://geodesic.mathdoc.fr/item/SMJ2_2022_48_4_a1/