A Newton–Secant method for differentiable set-valued maps in Nachi–Penot sense
Serdica Mathematical Journal, Tome 48 (2022) no. 1–2, pp. 41-68.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

This paper is concerned with the solving of variational inclusions of the form \(0\in f(x) + g(x) + F(x) – K\), where \(g\) is a function which is differentiable at a solution \(x^{*}\) of the inclusion but may be not differentiable in a neighborhood of \(x^{*}\). The function \(f\) and the set-valued mapping \(F\) are differentiable in the sense of Nachi–Penot [14] and \(K\) is a nonempty closed convex cone.We introduce a Newton-Secant method to solve our problem and the sequence associated is semilocally convergent to \(x^{*}\) with an order equal to \(\frac{1 +\sqrt{5}}{2}\). Finally, some numerical results are also given to illustrate the convergence of the proposed method.
Keywords: variational inclusions, set-valued maps, divided differences, generalized differentiation of set-valued maps, normed convex processes, majorizing sequences, 49J53, 49J40, 90C48, 65K10
@article{SMJ2_2022_48_1_2_a0,
     author = {Gaydu, Micha\"el and Yacinthe, Olguine and Nuiro, Silvere Paul and Pietrus, Alain},
     title = {A {Newton{\textendash}Secant} method for differentiable set-valued maps in {Nachi{\textendash}Penot} sense},
     journal = {Serdica Mathematical Journal},
     pages = {41--68},
     publisher = {mathdoc},
     volume = {48},
     number = {1{\textendash}2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2022_48_1_2_a0/}
}
TY  - JOUR
AU  - Gaydu, Michaël
AU  - Yacinthe, Olguine
AU  - Nuiro, Silvere Paul
AU  - Pietrus, Alain
TI  - A Newton–Secant method for differentiable set-valued maps in Nachi–Penot sense
JO  - Serdica Mathematical Journal
PY  - 2022
SP  - 41
EP  - 68
VL  - 48
IS  - 1–2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2022_48_1_2_a0/
LA  - en
ID  - SMJ2_2022_48_1_2_a0
ER  - 
%0 Journal Article
%A Gaydu, Michaël
%A Yacinthe, Olguine
%A Nuiro, Silvere Paul
%A Pietrus, Alain
%T A Newton–Secant method for differentiable set-valued maps in Nachi–Penot sense
%J Serdica Mathematical Journal
%D 2022
%P 41-68
%V 48
%N 1–2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2022_48_1_2_a0/
%G en
%F SMJ2_2022_48_1_2_a0
Gaydu, Michaël; Yacinthe, Olguine; Nuiro, Silvere Paul; Pietrus, Alain. A Newton–Secant method for differentiable set-valued maps in Nachi–Penot sense. Serdica Mathematical Journal, Tome 48 (2022) no. 1–2, pp. 41-68. http://geodesic.mathdoc.fr/item/SMJ2_2022_48_1_2_a0/