A Newton–Secant method for differentiable set-valued maps in Nachi–Penot sense
Serdica Mathematical Journal, Tome 48 (2022) no. 1–2, pp. 41-68
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
This paper is concerned with the solving of variational inclusions of the form \(0\in f(x) + g(x) + F(x) – K\), where \(g\) is a function which is differentiable at a solution \(x^{*}\) of the inclusion but may be not differentiable in a neighborhood of \(x^{*}\). The function \(f\) and the set-valued mapping \(F\) are differentiable in the sense of Nachi–Penot [14] and \(K\) is a nonempty closed convex cone.We introduce a Newton-Secant method to solve our problem and the sequence associated is semilocally convergent to \(x^{*}\) with an order equal to \(\frac{1 +\sqrt{5}}{2}\). Finally, some numerical results are also given to illustrate the convergence of the proposed method.
Keywords:
variational inclusions, set-valued maps, divided differences, generalized differentiation of set-valued maps, normed convex processes, majorizing sequences, 49J53, 49J40, 90C48, 65K10
@article{SMJ2_2022_48_1_2_a0,
author = {Gaydu, Micha\"el and Yacinthe, Olguine and Nuiro, Silvere Paul and Pietrus, Alain},
title = {A {Newton{\textendash}Secant} method for differentiable set-valued maps in {Nachi{\textendash}Penot} sense},
journal = {Serdica Mathematical Journal},
pages = {41--68},
year = {2022},
volume = {48},
number = {1{\textendash}2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2022_48_1_2_a0/}
}
TY - JOUR AU - Gaydu, Michaël AU - Yacinthe, Olguine AU - Nuiro, Silvere Paul AU - Pietrus, Alain TI - A Newton–Secant method for differentiable set-valued maps in Nachi–Penot sense JO - Serdica Mathematical Journal PY - 2022 SP - 41 EP - 68 VL - 48 IS - 1–2 UR - http://geodesic.mathdoc.fr/item/SMJ2_2022_48_1_2_a0/ LA - en ID - SMJ2_2022_48_1_2_a0 ER -
%0 Journal Article %A Gaydu, Michaël %A Yacinthe, Olguine %A Nuiro, Silvere Paul %A Pietrus, Alain %T A Newton–Secant method for differentiable set-valued maps in Nachi–Penot sense %J Serdica Mathematical Journal %D 2022 %P 41-68 %V 48 %N 1–2 %U http://geodesic.mathdoc.fr/item/SMJ2_2022_48_1_2_a0/ %G en %F SMJ2_2022_48_1_2_a0
Gaydu, Michaël; Yacinthe, Olguine; Nuiro, Silvere Paul; Pietrus, Alain. A Newton–Secant method for differentiable set-valued maps in Nachi–Penot sense. Serdica Mathematical Journal, Tome 48 (2022) no. 1–2, pp. 41-68. http://geodesic.mathdoc.fr/item/SMJ2_2022_48_1_2_a0/