Diophantine approximation by prime numbers of a special form
Serdica Mathematical Journal, Tome 47 (2022) no. 3, pp. 255-272.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We show that whenever \(\delta>0\), \(\eta\) are reals and constants \(\lambda _i\) subject to certain assumptions, there are infinitely many prime triples \(p_1, p_2, p_3\) satisfying the inequality \(|\lambda _1p_1 + \lambda _2p_2 + \lambda _3p_3+\eta| < (\max p_j)^{-1/18+\delta }\) and such that, for each \(i\in\{1,2,3\}\), \(p_i+2\) has at most 7 prime factors. The proof uses Davenport–Heilbronn adaption of the circle method together with a vector sieve method.
Keywords: Rosser's weights, vector sieve, circle method, almost primes, diophantine inequality, 11D75, 11N36, 11P32
@article{SMJ2_2022_47_3_a4,
     author = {Todorova, Tatiana},
     title = {Diophantine approximation by prime numbers of a special form},
     journal = {Serdica Mathematical Journal},
     pages = {255--272},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2022_47_3_a4/}
}
TY  - JOUR
AU  - Todorova, Tatiana
TI  - Diophantine approximation by prime numbers of a special form
JO  - Serdica Mathematical Journal
PY  - 2022
SP  - 255
EP  - 272
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2022_47_3_a4/
LA  - en
ID  - SMJ2_2022_47_3_a4
ER  - 
%0 Journal Article
%A Todorova, Tatiana
%T Diophantine approximation by prime numbers of a special form
%J Serdica Mathematical Journal
%D 2022
%P 255-272
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2022_47_3_a4/
%G en
%F SMJ2_2022_47_3_a4
Todorova, Tatiana. Diophantine approximation by prime numbers of a special form. Serdica Mathematical Journal, Tome 47 (2022) no. 3, pp. 255-272. http://geodesic.mathdoc.fr/item/SMJ2_2022_47_3_a4/