Uniqueness results on meromorphic functions concerning their shift and differential polynomial
Serdica Mathematical Journal, Tome 47 (2022) no. 3, pp. 191-212
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
In this paper, we investigate the uniqueness of meromorphic functions by considering their shift, \(q\)-difference and differential polynomial. We obtain some results which extend and generalize the results given by Chao Meng and Gang Liu [9].
Keywords:
Meromorphic function, shift, differential polynomial, unicity, weighted sharing, 30D35
@article{SMJ2_2022_47_3_a1,
author = {Waghamore, Harina and Raj, Preetham N.},
title = {Uniqueness results on meromorphic functions concerning their shift and differential polynomial},
journal = {Serdica Mathematical Journal},
pages = {191--212},
year = {2022},
volume = {47},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2022_47_3_a1/}
}
TY - JOUR AU - Waghamore, Harina AU - Raj, Preetham N. TI - Uniqueness results on meromorphic functions concerning their shift and differential polynomial JO - Serdica Mathematical Journal PY - 2022 SP - 191 EP - 212 VL - 47 IS - 3 UR - http://geodesic.mathdoc.fr/item/SMJ2_2022_47_3_a1/ LA - en ID - SMJ2_2022_47_3_a1 ER -
%0 Journal Article %A Waghamore, Harina %A Raj, Preetham N. %T Uniqueness results on meromorphic functions concerning their shift and differential polynomial %J Serdica Mathematical Journal %D 2022 %P 191-212 %V 47 %N 3 %U http://geodesic.mathdoc.fr/item/SMJ2_2022_47_3_a1/ %G en %F SMJ2_2022_47_3_a1
Waghamore, Harina; Raj, Preetham N. Uniqueness results on meromorphic functions concerning their shift and differential polynomial. Serdica Mathematical Journal, Tome 47 (2022) no. 3, pp. 191-212. http://geodesic.mathdoc.fr/item/SMJ2_2022_47_3_a1/