On the lcm-sum function over arbitrary sets of integers
Serdica Mathematical Journal, Tome 47 (2022) no. 3, pp. 179-190
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
Let \(\mathbb{N}\) denote the set of all positive integers. For \(j,n\in \mathbb{N}\), let \((j,n)\) and \([j,n]\) respectively denote their gcd and lcm. If \(S\subseteq \mathbb{N}\) and \(\alpha\) is a real number then define \(L_{S,\alpha}(n)\) to be the sum of \([j,n]^\alpha\), where \(j\in \{1,2,3,\ldots,n\}\) for which \((j,n)\in S\). In this paper we obtain asymptotic formulae for the summatory functions of \(L_{S,a}(n)\) and \(L_{S,-a}(n)\), where \(a\in \mathbb{N}\) and \(a\geq2\). Apart from deducing some results proved earlier for $S=\mathbb{N}$ by Ikeda and Matsuoka, certain new asymptotic formulae are obtained here.
Keywords:
Zeta-function of \(S\), unitary divisor, \(r\)-free integer, semi-\(r\)-free integer, unitary \(r\)-free integer, \((k,r)\)-integer, 11A25, 11N37
@article{SMJ2_2022_47_3_a0,
author = {Reddy, P. Anantha and Ganeshwar Rao, M. and Rama Prasad, V. Siva},
title = {On the lcm-sum function over arbitrary sets of integers},
journal = {Serdica Mathematical Journal},
pages = {179--190},
publisher = {mathdoc},
volume = {47},
number = {3},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2022_47_3_a0/}
}
TY - JOUR AU - Reddy, P. Anantha AU - Ganeshwar Rao, M. AU - Rama Prasad, V. Siva TI - On the lcm-sum function over arbitrary sets of integers JO - Serdica Mathematical Journal PY - 2022 SP - 179 EP - 190 VL - 47 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SMJ2_2022_47_3_a0/ LA - en ID - SMJ2_2022_47_3_a0 ER -
Reddy, P. Anantha; Ganeshwar Rao, M.; Rama Prasad, V. Siva. On the lcm-sum function over arbitrary sets of integers. Serdica Mathematical Journal, Tome 47 (2022) no. 3, pp. 179-190. http://geodesic.mathdoc.fr/item/SMJ2_2022_47_3_a0/