On the lcm-sum function over arbitrary sets of integers
Serdica Mathematical Journal, Tome 47 (2022) no. 3, pp. 179-190.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Let \(\mathbb{N}\) denote the set of all positive integers. For \(j,n\in \mathbb{N}\), let \((j,n)\) and \([j,n]\) respectively denote their gcd and lcm. If \(S\subseteq \mathbb{N}\) and \(\alpha\) is a real number then define \(L_{S,\alpha}(n)\) to be the sum of \([j,n]^\alpha\), where \(j\in \{1,2,3,\ldots,n\}\) for which \((j,n)\in S\). In this paper we obtain asymptotic formulae for the summatory functions of \(L_{S,a}(n)\) and \(L_{S,-a}(n)\), where \(a\in \mathbb{N}\) and \(a\geq2\). Apart from deducing some results proved earlier for $S=\mathbb{N}$ by Ikeda and Matsuoka, certain new asymptotic formulae are obtained here.
Keywords: Zeta-function of \(S\), unitary divisor, \(r\)-free integer, semi-\(r\)-free integer, unitary \(r\)-free integer, \((k,r)\)-integer, 11A25, 11N37
@article{SMJ2_2022_47_3_a0,
     author = {Reddy, P. Anantha and Ganeshwar Rao, M. and Rama Prasad, V. Siva},
     title = {On the  lcm-sum function over arbitrary sets of integers},
     journal = {Serdica Mathematical Journal},
     pages = {179--190},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2022_47_3_a0/}
}
TY  - JOUR
AU  - Reddy, P. Anantha
AU  - Ganeshwar Rao, M.
AU  - Rama Prasad, V. Siva
TI  - On the  lcm-sum function over arbitrary sets of integers
JO  - Serdica Mathematical Journal
PY  - 2022
SP  - 179
EP  - 190
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2022_47_3_a0/
LA  - en
ID  - SMJ2_2022_47_3_a0
ER  - 
%0 Journal Article
%A Reddy, P. Anantha
%A Ganeshwar Rao, M.
%A Rama Prasad, V. Siva
%T On the  lcm-sum function over arbitrary sets of integers
%J Serdica Mathematical Journal
%D 2022
%P 179-190
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2022_47_3_a0/
%G en
%F SMJ2_2022_47_3_a0
Reddy, P. Anantha; Ganeshwar Rao, M.; Rama Prasad, V. Siva. On the  lcm-sum function over arbitrary sets of integers. Serdica Mathematical Journal, Tome 47 (2022) no. 3, pp. 179-190. http://geodesic.mathdoc.fr/item/SMJ2_2022_47_3_a0/