A Diophantine problem concerning third order matrices
Serdica Mathematical Journal, Tome 47 (2022) no. 2, pp. 153-160.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper we find a third order unimodular matrix, none of whose entries is \(1\) or \(-1\), such that when each entry of the matrix is replaced by its cube, the resulting matrix is also unimodular. Further, we find third order square integer matrices \((a_{ij})\), none of the integers \(a_{ij}\) being \(1\) or \(-1\), such that \(\det{(a_{ij})}=k\) and \(\det{(a_{ij}^3)}=k^3\), where \(k\) is a nonzero integer.
Keywords: unimodular matrix, third order matrix, third order determinant, 15B36, 11C20, 11D25, 11D41
@article{SMJ2_2022_47_2_a4,
     author = {Choudhry, Ajai},
     title = {A {Diophantine} problem concerning third order matrices},
     journal = {Serdica Mathematical Journal},
     pages = {153--160},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2022_47_2_a4/}
}
TY  - JOUR
AU  - Choudhry, Ajai
TI  - A Diophantine problem concerning third order matrices
JO  - Serdica Mathematical Journal
PY  - 2022
SP  - 153
EP  - 160
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2022_47_2_a4/
LA  - en
ID  - SMJ2_2022_47_2_a4
ER  - 
%0 Journal Article
%A Choudhry, Ajai
%T A Diophantine problem concerning third order matrices
%J Serdica Mathematical Journal
%D 2022
%P 153-160
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2022_47_2_a4/
%G en
%F SMJ2_2022_47_2_a4
Choudhry, Ajai. A Diophantine problem concerning third order matrices. Serdica Mathematical Journal, Tome 47 (2022) no. 2, pp. 153-160. http://geodesic.mathdoc.fr/item/SMJ2_2022_47_2_a4/