A Diophantine problem concerning third order matrices
Serdica Mathematical Journal, Tome 47 (2022) no. 2, pp. 153-160
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
In this paper we find a third order unimodular matrix, none of whose entries is \(1\) or \(-1\), such that when each entry of the matrix is replaced by its cube, the resulting matrix is also unimodular. Further, we find third order square integer matrices \((a_{ij})\), none of the integers \(a_{ij}\) being \(1\) or \(-1\), such that \(\det{(a_{ij})}=k\) and \(\det{(a_{ij}^3)}=k^3\), where \(k\) is a nonzero integer.
Keywords:
unimodular matrix, third order matrix, third order determinant, 15B36, 11C20, 11D25, 11D41
@article{SMJ2_2022_47_2_a4,
author = {Choudhry, Ajai},
title = {A {Diophantine} problem concerning third order matrices},
journal = {Serdica Mathematical Journal},
pages = {153--160},
year = {2022},
volume = {47},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2022_47_2_a4/}
}
Choudhry, Ajai. A Diophantine problem concerning third order matrices. Serdica Mathematical Journal, Tome 47 (2022) no. 2, pp. 153-160. http://geodesic.mathdoc.fr/item/SMJ2_2022_47_2_a4/