Non-tame automorphisms of free polynilpotent Lie algebras
Serdica Mathematical Journal, Tome 47 (2022) no. 2, pp. 107-112
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
Let \(L\) be a free Lie algebra generated by \(x\) and \(y\) over an arbitrary field \(K\) of any characteristic and let \(V\) be an ideal of \(L\) of the form \(V = (\ldots((L^{k_m})^{k_{m-1}})\ldots)^{k_1}\), \(k_i\geq 2\),\($i=1,\ldots,m\), \(m\geq 2\), i.e. \(L/V\) is a non-trivial 2-generated free polynilpotent Lie algebra. We have established that the algebra \(L/V\) has non-tame IA-automorphisms.
Keywords:
IA-automorphisms, non-tame automorphisms, 17B01, 17B30, 17B40
@article{SMJ2_2022_47_2_a1,
author = {Ayd{\i}n, Ela},
title = {Non-tame automorphisms of free polynilpotent {Lie} algebras},
journal = {Serdica Mathematical Journal},
pages = {107--112},
year = {2022},
volume = {47},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2022_47_2_a1/}
}
Aydın, Ela. Non-tame automorphisms of free polynilpotent Lie algebras. Serdica Mathematical Journal, Tome 47 (2022) no. 2, pp. 107-112. http://geodesic.mathdoc.fr/item/SMJ2_2022_47_2_a1/