Non-tame automorphisms of free polynilpotent Lie algebras
Serdica Mathematical Journal, Tome 47 (2022) no. 2, pp. 107-112.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Let \(L\) be a free Lie algebra generated by \(x\) and \(y\) over an arbitrary field \(K\) of any characteristic and let \(V\) be an ideal of \(L\) of the form \(V = (\ldots((L^{k_m})^{k_{m-1}})\ldots)^{k_1}\), \(k_i\geq 2\),\($i=1,\ldots,m\), \(m\geq 2\), i.e. \(L/V\) is a non-trivial 2-generated free polynilpotent Lie algebra. We have established that the algebra \(L/V\) has non-tame IA-automorphisms.
Keywords: IA-automorphisms, non-tame automorphisms, 17B01, 17B30, 17B40
@article{SMJ2_2022_47_2_a1,
     author = {Ayd{\i}n, Ela},
     title = {Non-tame automorphisms of free polynilpotent {Lie} algebras},
     journal = {Serdica Mathematical Journal},
     pages = {107--112},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2022_47_2_a1/}
}
TY  - JOUR
AU  - Aydın, Ela
TI  - Non-tame automorphisms of free polynilpotent Lie algebras
JO  - Serdica Mathematical Journal
PY  - 2022
SP  - 107
EP  - 112
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2022_47_2_a1/
LA  - en
ID  - SMJ2_2022_47_2_a1
ER  - 
%0 Journal Article
%A Aydın, Ela
%T Non-tame automorphisms of free polynilpotent Lie algebras
%J Serdica Mathematical Journal
%D 2022
%P 107-112
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2022_47_2_a1/
%G en
%F SMJ2_2022_47_2_a1
Aydın, Ela. Non-tame automorphisms of free polynilpotent Lie algebras. Serdica Mathematical Journal, Tome 47 (2022) no. 2, pp. 107-112. http://geodesic.mathdoc.fr/item/SMJ2_2022_47_2_a1/