Topological radicals of semicrossed products
Serdica Mathematical Journal, Tome 47 (2021) no. 1, pp. 81-92
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
We characterize the hypocompact radical of a semicrossed product in terms of properties of the dynamical system. We show that an element A of a semicrossed product is in the hypocompact radical if and only if the Fourier coefficients of A vanish on the closure of the recurrent points and the 0-Fourier coefficient vanishes also on the largest perfect subset of X.
Keywords:
semicrossed products, non-selfadjoint operator algebras, topological radicals, hypocompact radical, scattered radical, dynamical system, 47L65, 16Nxx
@article{SMJ2_2021_47_1_a5,
author = {Andreolas, Gavriil and Anoussis, Michalis and Magiatis, Charalampos},
title = {Topological radicals of semicrossed products},
journal = {Serdica Mathematical Journal},
pages = {81--92},
year = {2021},
volume = {47},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2021_47_1_a5/}
}
TY - JOUR AU - Andreolas, Gavriil AU - Anoussis, Michalis AU - Magiatis, Charalampos TI - Topological radicals of semicrossed products JO - Serdica Mathematical Journal PY - 2021 SP - 81 EP - 92 VL - 47 IS - 1 UR - http://geodesic.mathdoc.fr/item/SMJ2_2021_47_1_a5/ LA - en ID - SMJ2_2021_47_1_a5 ER -
Andreolas, Gavriil; Anoussis, Michalis; Magiatis, Charalampos. Topological radicals of semicrossed products. Serdica Mathematical Journal, Tome 47 (2021) no. 1, pp. 81-92. http://geodesic.mathdoc.fr/item/SMJ2_2021_47_1_a5/