The structure of U(F (Cn × D8))
Serdica Mathematical Journal, Tome 46 (2021) no. 4, pp. 387-396
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
Let \(D_n\) be the dihedral group of order \(n\). The structures of the unit groups of the finite group algebras \(FD_8\) and \(F(C_2 \times D_8)\) over a field \(F\) of characteristic 2 are given in: L. Creedon, J. Gildea. The structure of the unit group of the group algebra \(F_{2^k}D_{8}\). Canad. Math. Bull. 54, 2 (2011), 237–243 and J. Gildea. Units of the group algebra \(F_{2^k}(C_{2} \times D_{8})\). J. Algebra Appl. 10, 4 (2011), 643–647, respectively. In this article, we establish the structure of the unit group of the group algebra \(F(C_n \times D_8)\), \(n \geq 1\) over a finite field \(F\) of characteristic \(p\) containing \(q=p^k\) elements.
Keywords:
unit group, dihedral group, cyclic group, 16U60, 20C05
@article{SMJ2_2021_46_4_a4,
author = {Ansari, Sheere Farhat and Sahai, Meena},
title = {The structure of {U(F} {(Cn} {\texttimes} {D8))}},
journal = {Serdica Mathematical Journal},
pages = {387--396},
publisher = {mathdoc},
volume = {46},
number = {4},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2021_46_4_a4/}
}
Ansari, Sheere Farhat; Sahai, Meena. The structure of U(F (Cn × D8)). Serdica Mathematical Journal, Tome 46 (2021) no. 4, pp. 387-396. http://geodesic.mathdoc.fr/item/SMJ2_2021_46_4_a4/