Multivariate compact law of the iterated logarithm for averaged stochastic approximation algorithms
Serdica Mathematical Journal, Tome 46 (2021) no. 4, pp. 335-356
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
The aim of this paper is to establish a multivariate compact law of the iterated logarithm for the averaged version of stochastic approximation algorithms. This is achieved by studying the strong convergence rate of a two-time-scale stochastic approximation algorithm, the use of which generalizes the averaging principle of stochastic approximation algorithms. The general result obtained is then applied to the well-known averaged versions of Robbins-Monro's and Kiefer-Wolfowitz's algorithms.
Keywords:
stochastic approximation algorithm, averaging principle, strong convergence rate, 62L20, 60F05, 62G07
@article{SMJ2_2021_46_4_a2,
author = {Mokkadem, Abdelkader and Pelletier, Mariane},
title = {Multivariate compact law of the iterated logarithm for averaged stochastic approximation algorithms},
journal = {Serdica Mathematical Journal},
pages = {335--356},
year = {2021},
volume = {46},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2021_46_4_a2/}
}
TY - JOUR AU - Mokkadem, Abdelkader AU - Pelletier, Mariane TI - Multivariate compact law of the iterated logarithm for averaged stochastic approximation algorithms JO - Serdica Mathematical Journal PY - 2021 SP - 335 EP - 356 VL - 46 IS - 4 UR - http://geodesic.mathdoc.fr/item/SMJ2_2021_46_4_a2/ LA - en ID - SMJ2_2021_46_4_a2 ER -
%0 Journal Article %A Mokkadem, Abdelkader %A Pelletier, Mariane %T Multivariate compact law of the iterated logarithm for averaged stochastic approximation algorithms %J Serdica Mathematical Journal %D 2021 %P 335-356 %V 46 %N 4 %U http://geodesic.mathdoc.fr/item/SMJ2_2021_46_4_a2/ %G en %F SMJ2_2021_46_4_a2
Mokkadem, Abdelkader; Pelletier, Mariane. Multivariate compact law of the iterated logarithm for averaged stochastic approximation algorithms. Serdica Mathematical Journal, Tome 46 (2021) no. 4, pp. 335-356. http://geodesic.mathdoc.fr/item/SMJ2_2021_46_4_a2/