The non-existence of [383, 5, 286] and [447, 5, 334] quaternary linear codes
Serdica Mathematical Journal, Tome 46 (2021) no. 3, pp. 207-220
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
It is known that \(n_4(5,286) = 383\) or 384 and \(n_4(5,334) = 447\) or 448, where \(n_q(k,d)\) is the minimum length \(n\) for which an \([n,k,d]_q\) code exists. We prove the non-existence of \([383,5,286]_4\) and \([447,5,334]_4\) codes, which determine the exact value of \(n_4(5,d)\) for \(d = 286, 334\).
Keywords:
optimal linear code, Griesmer bound, geometric method, quaternary linear code, 94B27, 94B65, 94B05
@article{SMJ2_2021_46_3_a0,
author = {Kanda, Hitoshi},
title = {The non-existence of [383, 5, 286] and [447, 5, 334] quaternary linear codes},
journal = {Serdica Mathematical Journal},
pages = {207--220},
year = {2021},
volume = {46},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2021_46_3_a0/}
}
Kanda, Hitoshi. The non-existence of [383, 5, 286] and [447, 5, 334] quaternary linear codes. Serdica Mathematical Journal, Tome 46 (2021) no. 3, pp. 207-220. http://geodesic.mathdoc.fr/item/SMJ2_2021_46_3_a0/