The non-existence of [383, 5, 286] and [447, 5, 334] quaternary linear codes
Serdica Mathematical Journal, Tome 46 (2021) no. 3, pp. 207-220.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

It is known that \(n_4(5,286) = 383\) or 384 and \(n_4(5,334) = 447\) or 448, where \(n_q(k,d)\) is the minimum length \(n\) for which an \([n,k,d]_q\) code exists. We prove the non-existence of \([383,5,286]_4\) and \([447,5,334]_4\) codes, which determine the exact value of \(n_4(5,d)\) for \(d = 286, 334\).
Keywords: optimal linear code, Griesmer bound, geometric method, quaternary linear code, 94B27, 94B65, 94B05
@article{SMJ2_2021_46_3_a0,
     author = {Kanda, Hitoshi},
     title = {The non-existence of [383, 5, 286] and [447, 5, 334] quaternary linear codes},
     journal = {Serdica Mathematical Journal},
     pages = {207--220},
     publisher = {mathdoc},
     volume = {46},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2021_46_3_a0/}
}
TY  - JOUR
AU  - Kanda, Hitoshi
TI  - The non-existence of [383, 5, 286] and [447, 5, 334] quaternary linear codes
JO  - Serdica Mathematical Journal
PY  - 2021
SP  - 207
EP  - 220
VL  - 46
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2021_46_3_a0/
LA  - en
ID  - SMJ2_2021_46_3_a0
ER  - 
%0 Journal Article
%A Kanda, Hitoshi
%T The non-existence of [383, 5, 286] and [447, 5, 334] quaternary linear codes
%J Serdica Mathematical Journal
%D 2021
%P 207-220
%V 46
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2021_46_3_a0/
%G en
%F SMJ2_2021_46_3_a0
Kanda, Hitoshi. The non-existence of [383, 5, 286] and [447, 5, 334] quaternary linear codes. Serdica Mathematical Journal, Tome 46 (2021) no. 3, pp. 207-220. http://geodesic.mathdoc.fr/item/SMJ2_2021_46_3_a0/