The center of the total ring of fractions
Serdica Mathematical Journal, Tome 46 (2020) no. 2, pp. 109-120
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
Let \(A\) be a right Ore domain, \(Z(A)\) be the center of \(A\) and \(Q_r(A)\) be the right total ring of fractions of \(A\). If\(K\) is a field and \(A\) is a \(K\)-algebra, in this short paper we prove that if \(A\) is finitely generated and \({\rm GKdim}(A)<{\rmGKdim}(Z(A))+1\), then \(Z(Q_r(A))\cong Q(Z(A))\). Many examples that illustrate the theorem are included, most of them within the skew\(PBW\) extensions.
Keywords:
Ore domains, total ring of fractions, center of a ring, Gelfand–Kirillov dimension, skew \(PBW\) extensions, 16S85, 16U70, 16P90, 16S36
@article{SMJ2_2020_46_2_a1,
author = {Lezama, Oswaldo and Venegas, Helbert},
title = {The center of the total ring of fractions},
journal = {Serdica Mathematical Journal},
pages = {109--120},
publisher = {mathdoc},
volume = {46},
number = {2},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2020_46_2_a1/}
}
Lezama, Oswaldo; Venegas, Helbert. The center of the total ring of fractions. Serdica Mathematical Journal, Tome 46 (2020) no. 2, pp. 109-120. http://geodesic.mathdoc.fr/item/SMJ2_2020_46_2_a1/