The center of the total ring of fractions
Serdica Mathematical Journal, Tome 46 (2020) no. 2, pp. 109-120.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Let \(A\) be a right Ore domain, \(Z(A)\) be the center of \(A\) and \(Q_r(A)\) be the right total ring of fractions of \(A\). If\(K\) is a field and \(A\) is a \(K\)-algebra, in this short paper we prove that if \(A\) is finitely generated and \({\rm GKdim}(A)<{\rmGKdim}(Z(A))+1\), then \(Z(Q_r(A))\cong Q(Z(A))\). Many examples that illustrate the theorem are included, most of them within the skew\(PBW\) extensions.
Keywords: Ore domains, total ring of fractions, center of a ring, Gelfand–Kirillov dimension, skew \(PBW\) extensions, 16S85, 16U70, 16P90, 16S36
@article{SMJ2_2020_46_2_a1,
     author = {Lezama, Oswaldo and Venegas, Helbert},
     title = {The center of the total ring of fractions},
     journal = {Serdica Mathematical Journal},
     pages = {109--120},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2020_46_2_a1/}
}
TY  - JOUR
AU  - Lezama, Oswaldo
AU  - Venegas, Helbert
TI  - The center of the total ring of fractions
JO  - Serdica Mathematical Journal
PY  - 2020
SP  - 109
EP  - 120
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2020_46_2_a1/
LA  - en
ID  - SMJ2_2020_46_2_a1
ER  - 
%0 Journal Article
%A Lezama, Oswaldo
%A Venegas, Helbert
%T The center of the total ring of fractions
%J Serdica Mathematical Journal
%D 2020
%P 109-120
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2020_46_2_a1/
%G en
%F SMJ2_2020_46_2_a1
Lezama, Oswaldo; Venegas, Helbert. The center of the total ring of fractions. Serdica Mathematical Journal, Tome 46 (2020) no. 2, pp. 109-120. http://geodesic.mathdoc.fr/item/SMJ2_2020_46_2_a1/