An optimal algorithm for computing minimum \(k\)-hop dominating set of permutation graphs
Serdica Mathematical Journal, Tome 46 (2020) no. 1, pp. 43-60
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
A \(k\)-hop dominating set (\(k\)-HDS) \(D\) of a graph \(G = (V,E)\) is a subset of \(V\) such that every vertex \(x\in V\) is within \(k\)-steps from at least one vertex \(y\in D\), i.e., \(d(x,y)\leq k\), where \(k\) is a fixed positive integer. A \(k\)-hop dominating set \(D\) is said to be minimal if there does not exist any \(H\subset D\) such that \(H\) is a \(k\)-HDS of \(G\). If a dominating set \(D\) is minimal as well as it is \(k\)-HDS then it is said to be minimum \(k\)-hop dominating set. In this paper, we present an optimal algorithm to compute a minimum \(k\)-HDS of permutation graphs with \(n\) vertices which runs in \(O(n)\) time.
Keywords:
Design and analysis of algorithms, \(k\)-hop domination, permutation graphs, 05C30, 05C12, 68R10, 68Q25
@article{SMJ2_2020_46_1_a3,
author = {Barman, Sambhu and Pal, Madhumangal and Mondal, Sukumar},
title = {An optimal algorithm for computing minimum \(k\)-hop dominating set of permutation graphs},
journal = {Serdica Mathematical Journal},
pages = {43--60},
publisher = {mathdoc},
volume = {46},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2020_46_1_a3/}
}
TY - JOUR AU - Barman, Sambhu AU - Pal, Madhumangal AU - Mondal, Sukumar TI - An optimal algorithm for computing minimum \(k\)-hop dominating set of permutation graphs JO - Serdica Mathematical Journal PY - 2020 SP - 43 EP - 60 VL - 46 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SMJ2_2020_46_1_a3/ LA - en ID - SMJ2_2020_46_1_a3 ER -
%0 Journal Article %A Barman, Sambhu %A Pal, Madhumangal %A Mondal, Sukumar %T An optimal algorithm for computing minimum \(k\)-hop dominating set of permutation graphs %J Serdica Mathematical Journal %D 2020 %P 43-60 %V 46 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SMJ2_2020_46_1_a3/ %G en %F SMJ2_2020_46_1_a3
Barman, Sambhu; Pal, Madhumangal; Mondal, Sukumar. An optimal algorithm for computing minimum \(k\)-hop dominating set of permutation graphs. Serdica Mathematical Journal, Tome 46 (2020) no. 1, pp. 43-60. http://geodesic.mathdoc.fr/item/SMJ2_2020_46_1_a3/