On extensions of commuting tuples of symmetric and isometric operators
Serdica Mathematical Journal, Tome 46 (2020) no. 1, pp. 19-34.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper we study extensions of commuting tuples of symmetric and isometric operators to commuting tuples of self-adjoint and unitary operators. Some conditions which ensure the existence of such extensions are presented. A multidimensional analog of the Godič–Lucenko Theorem is proved. An application to a multidimensional power-trigonometric moment problem is given.
Keywords: extensions of operators, symmetric operators, isometric operators, moment problems, 47A20
@article{SMJ2_2020_46_1_a1,
     author = {Zagorodnyuk, Sergey},
     title = {On extensions of commuting tuples of symmetric and isometric operators},
     journal = {Serdica Mathematical Journal},
     pages = {19--34},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2020_46_1_a1/}
}
TY  - JOUR
AU  - Zagorodnyuk, Sergey
TI  - On extensions of commuting tuples of symmetric and isometric operators
JO  - Serdica Mathematical Journal
PY  - 2020
SP  - 19
EP  - 34
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2020_46_1_a1/
LA  - en
ID  - SMJ2_2020_46_1_a1
ER  - 
%0 Journal Article
%A Zagorodnyuk, Sergey
%T On extensions of commuting tuples of symmetric and isometric operators
%J Serdica Mathematical Journal
%D 2020
%P 19-34
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2020_46_1_a1/
%G en
%F SMJ2_2020_46_1_a1
Zagorodnyuk, Sergey. On extensions of commuting tuples of symmetric and isometric operators. Serdica Mathematical Journal, Tome 46 (2020) no. 1, pp. 19-34. http://geodesic.mathdoc.fr/item/SMJ2_2020_46_1_a1/