Equivariant absolute extensors for free actions of compact groups
Serdica Mathematical Journal, Tome 44 (2018) no. 1-2, pp. 187-194
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
For every compact metrizable group G there is a free universal G-action on the Hilbert space ℓ2 which makes ℓ2 a G-equivariant absolute extensor for the class of free G-spaces.
Keywords:
compact group, absolute extensor, 55M15, 57S10, 55R35
@article{SMJ2_2018_44_1-2_a9,
author = {Ageev, Sergey and Dranishnikov, Alexander and Keesling, James},
title = {Equivariant absolute extensors for free actions of compact groups},
journal = {Serdica Mathematical Journal},
pages = {187--194},
year = {2018},
volume = {44},
number = {1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2018_44_1-2_a9/}
}
TY - JOUR AU - Ageev, Sergey AU - Dranishnikov, Alexander AU - Keesling, James TI - Equivariant absolute extensors for free actions of compact groups JO - Serdica Mathematical Journal PY - 2018 SP - 187 EP - 194 VL - 44 IS - 1-2 UR - http://geodesic.mathdoc.fr/item/SMJ2_2018_44_1-2_a9/ LA - en ID - SMJ2_2018_44_1-2_a9 ER -
Ageev, Sergey; Dranishnikov, Alexander; Keesling, James. Equivariant absolute extensors for free actions of compact groups. Serdica Mathematical Journal, Tome 44 (2018) no. 1-2, pp. 187-194. http://geodesic.mathdoc.fr/item/SMJ2_2018_44_1-2_a9/