Constructing selections stepwise over skeletons of nerves of covers
Serdica Mathematical Journal, Tome 44 (2018) no. 1-2, pp. 137-154 Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library

Voir la notice de l'article

It is given a simplified and self-contained proof of the classical Michael’s finite-dimensional selection theorem. The proof is based on approximate selections constructed stepwise over skeletons of nerves of covers. The method is also applied to simplify the proof of the Schepin–Brodsky’s generalisation of this theorem.
Keywords: Lower semi-continuous mapping, lower locally constant mapping, continuous selection, local connectedness in finite dimension, finite-dimensional space, 54C60, 54C65, 54F35, 54F45
@article{SMJ2_2018_44_1-2_a6,
     author = {Gutev, Valentin},
     title = {Constructing selections stepwise over skeletons of nerves of covers},
     journal = {Serdica Mathematical Journal},
     pages = {137--154},
     year = {2018},
     volume = {44},
     number = {1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2018_44_1-2_a6/}
}
TY  - JOUR
AU  - Gutev, Valentin
TI  - Constructing selections stepwise over skeletons of nerves of covers
JO  - Serdica Mathematical Journal
PY  - 2018
SP  - 137
EP  - 154
VL  - 44
IS  - 1-2
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2018_44_1-2_a6/
LA  - en
ID  - SMJ2_2018_44_1-2_a6
ER  - 
%0 Journal Article
%A Gutev, Valentin
%T Constructing selections stepwise over skeletons of nerves of covers
%J Serdica Mathematical Journal
%D 2018
%P 137-154
%V 44
%N 1-2
%U http://geodesic.mathdoc.fr/item/SMJ2_2018_44_1-2_a6/
%G en
%F SMJ2_2018_44_1-2_a6
Gutev, Valentin. Constructing selections stepwise over skeletons of nerves of covers. Serdica Mathematical Journal, Tome 44 (2018) no. 1-2, pp. 137-154. http://geodesic.mathdoc.fr/item/SMJ2_2018_44_1-2_a6/