Product of proper shape equivalences over finite coverings is an equivalence
Serdica Mathematical Journal, Tome 44 (2018) no. 1-2, pp. 121-136
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
In this paper we prove that in the category of proper shape over finite coverings from ShpF (X) = ShpF (X′) and ShpF (Y ) = ShpF (Y′) it follows that ShpF (X × Y ) = ShpF (X′ × Y′). Also, we give an example in which the product of two morphisms is not morphism in the category of proper shape.
Keywords:
Product of morphisms, proper proximate sequence over finite coverings, intrinsic
shape, finite covering, shape of product, 54C56
@article{SMJ2_2018_44_1-2_a5,
author = {Shekutkovski, Nikita and Abdulla, Buklla},
title = {Product of proper shape equivalences over finite coverings is an equivalence},
journal = {Serdica Mathematical Journal},
pages = {121--136},
year = {2018},
volume = {44},
number = {1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2018_44_1-2_a5/}
}
TY - JOUR AU - Shekutkovski, Nikita AU - Abdulla, Buklla TI - Product of proper shape equivalences over finite coverings is an equivalence JO - Serdica Mathematical Journal PY - 2018 SP - 121 EP - 136 VL - 44 IS - 1-2 UR - http://geodesic.mathdoc.fr/item/SMJ2_2018_44_1-2_a5/ LA - en ID - SMJ2_2018_44_1-2_a5 ER -
Shekutkovski, Nikita; Abdulla, Buklla. Product of proper shape equivalences over finite coverings is an equivalence. Serdica Mathematical Journal, Tome 44 (2018) no. 1-2, pp. 121-136. http://geodesic.mathdoc.fr/item/SMJ2_2018_44_1-2_a5/