Primitive decomposition of elements of the free metabelian Lie algebra of rank two
Serdica Mathematical Journal, Tome 43 (2017) no. 3-4, pp. 369-374.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We give a primitive decomposition of the elements of the free metabelian Lie algebra of rank 2 over a field of characteristic 0 and determine the primitive length of the elements.
Keywords: Free metabelian Lie algebras, primitive length, 17B01, 17B30, 17B40
@article{SMJ2_2017_43_3-4_a7,
     author = {Ayd{\i}n, Ela},
     title = {Primitive decomposition of elements of the free metabelian {Lie} algebra of rank two},
     journal = {Serdica Mathematical Journal},
     pages = {369--374},
     publisher = {mathdoc},
     volume = {43},
     number = {3-4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2017_43_3-4_a7/}
}
TY  - JOUR
AU  - Aydın, Ela
TI  - Primitive decomposition of elements of the free metabelian Lie algebra of rank two
JO  - Serdica Mathematical Journal
PY  - 2017
SP  - 369
EP  - 374
VL  - 43
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2017_43_3-4_a7/
LA  - en
ID  - SMJ2_2017_43_3-4_a7
ER  - 
%0 Journal Article
%A Aydın, Ela
%T Primitive decomposition of elements of the free metabelian Lie algebra of rank two
%J Serdica Mathematical Journal
%D 2017
%P 369-374
%V 43
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2017_43_3-4_a7/
%G en
%F SMJ2_2017_43_3-4_a7
Aydın, Ela. Primitive decomposition of elements of the free metabelian Lie algebra of rank two. Serdica Mathematical Journal, Tome 43 (2017) no. 3-4, pp. 369-374. http://geodesic.mathdoc.fr/item/SMJ2_2017_43_3-4_a7/