Primitive decomposition of elements of the free metabelian Lie algebra of rank two
Serdica Mathematical Journal, Tome 43 (2017) no. 3-4, pp. 369-374
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
We give a primitive decomposition of the elements of the free metabelian Lie algebra of rank 2 over a field of characteristic 0 and determine the primitive length of the elements.
Keywords:
Free metabelian Lie algebras, primitive length, 17B01, 17B30, 17B40
@article{SMJ2_2017_43_3-4_a7,
author = {Ayd{\i}n, Ela},
title = {Primitive decomposition of elements of the free metabelian {Lie} algebra of rank two},
journal = {Serdica Mathematical Journal},
pages = {369--374},
publisher = {mathdoc},
volume = {43},
number = {3-4},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2017_43_3-4_a7/}
}
TY - JOUR AU - Aydın, Ela TI - Primitive decomposition of elements of the free metabelian Lie algebra of rank two JO - Serdica Mathematical Journal PY - 2017 SP - 369 EP - 374 VL - 43 IS - 3-4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SMJ2_2017_43_3-4_a7/ LA - en ID - SMJ2_2017_43_3-4_a7 ER -
Aydın, Ela. Primitive decomposition of elements of the free metabelian Lie algebra of rank two. Serdica Mathematical Journal, Tome 43 (2017) no. 3-4, pp. 369-374. http://geodesic.mathdoc.fr/item/SMJ2_2017_43_3-4_a7/