Convergence analysis of semi-implicit Euler method for nonlinear stochastic delay differential equations of neutral type
Serdica Mathematical Journal, Tome 43 (2017) no. 2, pp. 147-160
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
The main purpose of this paper is to study the convergence of numerical solutions to a class of neutral stochastic delay differential equations (NSDDEs) in Itô sense. The basic idea is to reformulate the original problem eliminating the dependence on the differentiation of the solution in the past values, which leads to a stochastic differential algebraic system. It is shown that the Semi-implicit Euler (SIE) method with two parameters θ and λ is mean-square convergent with order p =1/2 for Lipschitz continuous coefficients of underlying NSDDEs. A nonlinear numerical example illustrates the theoretical results.
Keywords:
Neutral stochastic delay, differential equations, mean-square convergence, semiimplicit Euler method, 65C20, 60H35, 65C30
@article{SMJ2_2017_43_2_a5,
author = {Milev, Marian and Rouz, O. Farkhondeh and Ahmadian, D.},
title = {Convergence analysis of semi-implicit {Euler} method for nonlinear stochastic delay differential equations of neutral type},
journal = {Serdica Mathematical Journal},
pages = {147--160},
year = {2017},
volume = {43},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2017_43_2_a5/}
}
TY - JOUR AU - Milev, Marian AU - Rouz, O. Farkhondeh AU - Ahmadian, D. TI - Convergence analysis of semi-implicit Euler method for nonlinear stochastic delay differential equations of neutral type JO - Serdica Mathematical Journal PY - 2017 SP - 147 EP - 160 VL - 43 IS - 2 UR - http://geodesic.mathdoc.fr/item/SMJ2_2017_43_2_a5/ LA - en ID - SMJ2_2017_43_2_a5 ER -
%0 Journal Article %A Milev, Marian %A Rouz, O. Farkhondeh %A Ahmadian, D. %T Convergence analysis of semi-implicit Euler method for nonlinear stochastic delay differential equations of neutral type %J Serdica Mathematical Journal %D 2017 %P 147-160 %V 43 %N 2 %U http://geodesic.mathdoc.fr/item/SMJ2_2017_43_2_a5/ %G en %F SMJ2_2017_43_2_a5
Milev, Marian; Rouz, O. Farkhondeh; Ahmadian, D. Convergence analysis of semi-implicit Euler method for nonlinear stochastic delay differential equations of neutral type. Serdica Mathematical Journal, Tome 43 (2017) no. 2, pp. 147-160. http://geodesic.mathdoc.fr/item/SMJ2_2017_43_2_a5/