Convergence analysis of semi-implicit Euler method for nonlinear stochastic delay differential equations of neutral type
Serdica Mathematical Journal, Tome 43 (2017) no. 2, pp. 147-160.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The main purpose of this paper is to study the convergence of numerical solutions to a class of neutral stochastic delay differential equations (NSDDEs) in Itô sense. The basic idea is to reformulate the original problem eliminating the dependence on the differentiation of the solution in the past values, which leads to a stochastic differential algebraic system. It is shown that the Semi-implicit Euler (SIE) method with two parameters θ and λ is mean-square convergent with order p =1/2 for Lipschitz continuous coefficients of underlying NSDDEs. A nonlinear numerical example illustrates the theoretical results.
Keywords: Neutral stochastic delay, differential equations, mean-square convergence, semiimplicit Euler method, 65C20, 60H35, 65C30
@article{SMJ2_2017_43_2_a5,
     author = {Milev, Marian and Rouz, O. Farkhondeh and Ahmadian, D.},
     title = {Convergence analysis of semi-implicit {Euler} method for nonlinear stochastic delay differential equations of neutral type},
     journal = {Serdica Mathematical Journal},
     pages = {147--160},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2017_43_2_a5/}
}
TY  - JOUR
AU  - Milev, Marian
AU  - Rouz, O. Farkhondeh
AU  - Ahmadian, D.
TI  - Convergence analysis of semi-implicit Euler method for nonlinear stochastic delay differential equations of neutral type
JO  - Serdica Mathematical Journal
PY  - 2017
SP  - 147
EP  - 160
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2017_43_2_a5/
LA  - en
ID  - SMJ2_2017_43_2_a5
ER  - 
%0 Journal Article
%A Milev, Marian
%A Rouz, O. Farkhondeh
%A Ahmadian, D.
%T Convergence analysis of semi-implicit Euler method for nonlinear stochastic delay differential equations of neutral type
%J Serdica Mathematical Journal
%D 2017
%P 147-160
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2017_43_2_a5/
%G en
%F SMJ2_2017_43_2_a5
Milev, Marian; Rouz, O. Farkhondeh; Ahmadian, D. Convergence analysis of semi-implicit Euler method for nonlinear stochastic delay differential equations of neutral type. Serdica Mathematical Journal, Tome 43 (2017) no. 2, pp. 147-160. http://geodesic.mathdoc.fr/item/SMJ2_2017_43_2_a5/