Jordan elementary maps on alternative division rings
Serdica Mathematical Journal, Tome 43 (2017) no. 2, pp. 161-168.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this work we prove that if R and R′ are arbitrary alternative division rings, then under a mild condition every Jordan semi-isomorphism (M, M^*) of R × R′ is a isomorphism or an anti-isomorphism.
Keywords: Jordan semi-isomorphism, alternative rings, 17A36, 17D05
@article{SMJ2_2017_43_2_a4,
     author = {Leonardo, Bruno and Ferreira, Macedo},
     title = {Jordan elementary maps on alternative division rings},
     journal = {Serdica Mathematical Journal},
     pages = {161--168},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2017_43_2_a4/}
}
TY  - JOUR
AU  - Leonardo, Bruno
AU  - Ferreira, Macedo
TI  - Jordan elementary maps on alternative division rings
JO  - Serdica Mathematical Journal
PY  - 2017
SP  - 161
EP  - 168
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2017_43_2_a4/
LA  - en
ID  - SMJ2_2017_43_2_a4
ER  - 
%0 Journal Article
%A Leonardo, Bruno
%A Ferreira, Macedo
%T Jordan elementary maps on alternative division rings
%J Serdica Mathematical Journal
%D 2017
%P 161-168
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2017_43_2_a4/
%G en
%F SMJ2_2017_43_2_a4
Leonardo, Bruno; Ferreira, Macedo. Jordan elementary maps on alternative division rings. Serdica Mathematical Journal, Tome 43 (2017) no. 2, pp. 161-168. http://geodesic.mathdoc.fr/item/SMJ2_2017_43_2_a4/