A characterization of Dupin hypersurfaces in R^5
Serdica Mathematical Journal, Tome 43 (2017) no. 2, pp. 169-186.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper we study Dupin hypersurfaces in R^5 parametrized by lines of curvature, with four distinct principal curvatures. We give a local characterization of this class of hypersurfaces in terms of the principal curvatures and four vector valued functions of one variable. We prove that these vectorial functions describe plane curves or points in R^5. We show that the Lie curvature of these Dupin hypersurfaces is constant with some conditions on the Laplace invariants and the Möbius curvature, but some Möbius curvatures are constant along certain lines of curvature. We give explicit examples of such Dupin hypersurfaces.
Keywords: Dupin hypersurfaces, Lie curvature, Laplace invariants, lines of curvature, 53A07, 53C42
@article{SMJ2_2017_43_2_a3,
     author = {Riveros, Carlos M. C.},
     title = {A characterization of {Dupin} hypersurfaces in {R^5}},
     journal = {Serdica Mathematical Journal},
     pages = {169--186},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2017_43_2_a3/}
}
TY  - JOUR
AU  - Riveros, Carlos M. C.
TI  - A characterization of Dupin hypersurfaces in R^5
JO  - Serdica Mathematical Journal
PY  - 2017
SP  - 169
EP  - 186
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2017_43_2_a3/
LA  - en
ID  - SMJ2_2017_43_2_a3
ER  - 
%0 Journal Article
%A Riveros, Carlos M. C.
%T A characterization of Dupin hypersurfaces in R^5
%J Serdica Mathematical Journal
%D 2017
%P 169-186
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2017_43_2_a3/
%G en
%F SMJ2_2017_43_2_a3
Riveros, Carlos M. C. A characterization of Dupin hypersurfaces in R^5. Serdica Mathematical Journal, Tome 43 (2017) no. 2, pp. 169-186. http://geodesic.mathdoc.fr/item/SMJ2_2017_43_2_a3/