Symplectic decomposition of the massive coadjoint orbits of a semidirect product
Serdica Mathematical Journal, Tome 43 (2017) no. 1, pp. 021-034
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
Let G be the semidirect product V ⋊ K where K is a connected semisimple non-compact Lie group acting linearily on a finite-dimensional real vector space V . Let O be a coadjoint orbit of G whose little group K0 is a maximal compact subgroup of K. We construct an explicit symplectomorphism between O and the symplectic product R^2n × O′ where O′ is a little group coadjoint orbit. We treat in details the case of the Poincaré group.
Keywords:
Semidirect product, coadjoint orbit, unitary representation, symplectomorphism, Weyl quantization, Berezin quantization, Poincaré group, 81S10, 22E46, 22E45, 81R05
@article{SMJ2_2017_43_1_a1,
author = {Cahen, Benjamin},
title = {Symplectic decomposition of the massive coadjoint orbits of a semidirect product},
journal = {Serdica Mathematical Journal},
pages = {021--034},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2017_43_1_a1/}
}
Cahen, Benjamin. Symplectic decomposition of the massive coadjoint orbits of a semidirect product. Serdica Mathematical Journal, Tome 43 (2017) no. 1, pp. 021-034. http://geodesic.mathdoc.fr/item/SMJ2_2017_43_1_a1/