Symplectic decomposition of the massive coadjoint orbits of a semidirect product
Serdica Mathematical Journal, Tome 43 (2017) no. 1, pp. 021-034.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Let G be the semidirect product V ⋊ K where K is a connected semisimple non-compact Lie group acting linearily on a finite-dimensional real vector space V . Let O be a coadjoint orbit of G whose little group K0 is a maximal compact subgroup of K. We construct an explicit symplectomorphism between O and the symplectic product R^2n × O′ where O′ is a little group coadjoint orbit. We treat in details the case of the Poincaré group.
Keywords: Semidirect product, coadjoint orbit, unitary representation, symplectomorphism, Weyl quantization, Berezin quantization, Poincaré group, 81S10, 22E46, 22E45, 81R05
@article{SMJ2_2017_43_1_a1,
     author = {Cahen, Benjamin},
     title = {Symplectic decomposition of the massive coadjoint orbits of a semidirect product},
     journal = {Serdica Mathematical Journal},
     pages = {021--034},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2017_43_1_a1/}
}
TY  - JOUR
AU  - Cahen, Benjamin
TI  - Symplectic decomposition of the massive coadjoint orbits of a semidirect product
JO  - Serdica Mathematical Journal
PY  - 2017
SP  - 021
EP  - 034
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2017_43_1_a1/
LA  - en
ID  - SMJ2_2017_43_1_a1
ER  - 
%0 Journal Article
%A Cahen, Benjamin
%T Symplectic decomposition of the massive coadjoint orbits of a semidirect product
%J Serdica Mathematical Journal
%D 2017
%P 021-034
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2017_43_1_a1/
%G en
%F SMJ2_2017_43_1_a1
Cahen, Benjamin. Symplectic decomposition of the massive coadjoint orbits of a semidirect product. Serdica Mathematical Journal, Tome 43 (2017) no. 1, pp. 021-034. http://geodesic.mathdoc.fr/item/SMJ2_2017_43_1_a1/