Most General Fractional Representation Formula for Functions and Implications
Serdica Mathematical Journal, Tome 40 (2014) no. 1, pp. 89-98.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Here we present the most general fractional representation formulae for a function in terms of the most general fractional integral operators due to S. Kalla, [3], [4], [5]. The last include most of the well-known fractional integrals such as of Riemann-Liouville, Erdélyi-Kober and Saigo, etc. Based on these we derive very general fractional Ostrowski type inequalities. 2010 Mathematics Subject Classification: 26A33, 26D10, 26D15.
Keywords: Fractional representation, Kalla fractional integral, Ostrowski inequality
@article{SMJ2_2014_40_1_a6,
     author = {Anastassiou, George A.},
     title = {Most {General} {Fractional} {Representation} {Formula} for {Functions} and {Implications}},
     journal = {Serdica Mathematical Journal},
     pages = {89--98},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2014_40_1_a6/}
}
TY  - JOUR
AU  - Anastassiou, George A.
TI  - Most General Fractional Representation Formula for Functions and Implications
JO  - Serdica Mathematical Journal
PY  - 2014
SP  - 89
EP  - 98
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2014_40_1_a6/
LA  - en
ID  - SMJ2_2014_40_1_a6
ER  - 
%0 Journal Article
%A Anastassiou, George A.
%T Most General Fractional Representation Formula for Functions and Implications
%J Serdica Mathematical Journal
%D 2014
%P 89-98
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2014_40_1_a6/
%G en
%F SMJ2_2014_40_1_a6
Anastassiou, George A. Most General Fractional Representation Formula for Functions and Implications. Serdica Mathematical Journal, Tome 40 (2014) no. 1, pp. 89-98. http://geodesic.mathdoc.fr/item/SMJ2_2014_40_1_a6/