Most General Fractional Representation Formula for Functions and Implications
Serdica Mathematical Journal, Tome 40 (2014) no. 1, pp. 89-98
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
Here we present the most general fractional representation formulae for a function in terms of the most general fractional integral operators due to S. Kalla, [3], [4], [5]. The last include most of the well-known fractional integrals such as of Riemann-Liouville, Erdélyi-Kober and Saigo, etc. Based on these we derive very general fractional Ostrowski type inequalities. 2010 Mathematics Subject Classification: 26A33, 26D10, 26D15.
Keywords:
Fractional representation, Kalla fractional integral, Ostrowski inequality
@article{SMJ2_2014_40_1_a6,
author = {Anastassiou, George A.},
title = {Most {General} {Fractional} {Representation} {Formula} for {Functions} and {Implications}},
journal = {Serdica Mathematical Journal},
pages = {89--98},
publisher = {mathdoc},
volume = {40},
number = {1},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2014_40_1_a6/}
}
TY - JOUR AU - Anastassiou, George A. TI - Most General Fractional Representation Formula for Functions and Implications JO - Serdica Mathematical Journal PY - 2014 SP - 89 EP - 98 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SMJ2_2014_40_1_a6/ LA - en ID - SMJ2_2014_40_1_a6 ER -
Anastassiou, George A. Most General Fractional Representation Formula for Functions and Implications. Serdica Mathematical Journal, Tome 40 (2014) no. 1, pp. 89-98. http://geodesic.mathdoc.fr/item/SMJ2_2014_40_1_a6/