Empirical Bayes Test for the Parameter of Exponential-Weibull Distribution under Negative Associated Samples
Serdica Mathematical Journal, Tome 40 (2014) no. 1, pp. 77-88.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

By using weighted kernel-type density estimator, the empirical Bayes test rules for parameter of Exponential-Weibull distribution are constructed and the asymptotically optimal property is obtained under negative associated samples. It is shown that the convergence rates of the proposed EB test rules can arbitrarily close to O(n^−1/2) under very mild conditions. 2010 Mathematics Subject Classification: 62C12, 62F12.
Keywords: Negative associated samples, empirical Bayes test, asymptotic optimality, convergence rates
@article{SMJ2_2014_40_1_a5,
     author = {Li, Naiyi and Li, Yongming},
     title = {Empirical {Bayes} {Test} for the {Parameter} of {Exponential-Weibull} {Distribution} under {Negative} {Associated} {Samples}},
     journal = {Serdica Mathematical Journal},
     pages = {77--88},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2014_40_1_a5/}
}
TY  - JOUR
AU  - Li, Naiyi
AU  - Li, Yongming
TI  - Empirical Bayes Test for the Parameter of Exponential-Weibull Distribution under Negative Associated Samples
JO  - Serdica Mathematical Journal
PY  - 2014
SP  - 77
EP  - 88
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2014_40_1_a5/
LA  - en
ID  - SMJ2_2014_40_1_a5
ER  - 
%0 Journal Article
%A Li, Naiyi
%A Li, Yongming
%T Empirical Bayes Test for the Parameter of Exponential-Weibull Distribution under Negative Associated Samples
%J Serdica Mathematical Journal
%D 2014
%P 77-88
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2014_40_1_a5/
%G en
%F SMJ2_2014_40_1_a5
Li, Naiyi; Li, Yongming. Empirical Bayes Test for the Parameter of Exponential-Weibull Distribution under Negative Associated Samples. Serdica Mathematical Journal, Tome 40 (2014) no. 1, pp. 77-88. http://geodesic.mathdoc.fr/item/SMJ2_2014_40_1_a5/