Tiling 3 and 4-dimensional Euclidean spaces by Lee spheres
Serdica Mathematical Journal, Tome 40 (2014) no. 1, pp. 1-12
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
The paper addresses the problem if the n-dimensional Euclidean space can be tiled with translated copies of Lee spheres of not necessarily equal radii such that at least one of the Lee spheres has radius at least 2. It will be showed that for n = 3, 4 there is no such tiling. 2010 Mathematics Subject Classification: Primary 94B60; Secondary 05B45, 52C22.
Keywords:
tiling by Lee spheres, integer tiling, lattice-like tiling, exact cover problem
@article{SMJ2_2014_40_1_a0,
author = {Szab\'o, S\'andor},
title = {Tiling 3 and 4-dimensional {Euclidean} spaces by {Lee} spheres},
journal = {Serdica Mathematical Journal},
pages = {1--12},
year = {2014},
volume = {40},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2014_40_1_a0/}
}
Szabó, Sándor. Tiling 3 and 4-dimensional Euclidean spaces by Lee spheres. Serdica Mathematical Journal, Tome 40 (2014) no. 1, pp. 1-12. http://geodesic.mathdoc.fr/item/SMJ2_2014_40_1_a0/