On the Optimal Control of Some Parabolic Partial Differential Equations Arising in Economics
Serdica Mathematical Journal, Tome 39 (2013) no. 3-4, pp. 331-354
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
We review an emerging application field to parabolic partial differential equations (PDEs), that’s economic growth theory. After a short presentation of concrete applications, we highlight the peculiarities of optimal control problems of parabolic PDEs with infinite time horizons. In particular, the heuristic application of the maximum principle to the latter leads to single out a serious ill-posedness problem, which is, in our view, a barrier to the use of parabolic PDEs in economic growth studies as the latter
are interested in long-run asymptotic solutions, thus requiring the solution
to infinite time horizon optimal control problems. Adapted dynamic programming methods are used to dig deeper into the identified ill-posedness issue. 2010 Mathematics Subject Classification: 91B62, 91B72, 49K20, 49L20.
Keywords:
Parabolic partial differential equations, optimal control, infinite dimensional problems, infinite time horizons, ill-posedness, dynamic programming
@article{SMJ2_2013_39_3-4_a8,
author = {Boucekkine, R. and Camacho, C. and Fabbri, G.},
title = {On the {Optimal} {Control} of {Some} {Parabolic} {Partial} {Differential} {Equations} {Arising} in {Economics}},
journal = {Serdica Mathematical Journal},
pages = {331--354},
year = {2013},
volume = {39},
number = {3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2013_39_3-4_a8/}
}
TY - JOUR AU - Boucekkine, R. AU - Camacho, C. AU - Fabbri, G. TI - On the Optimal Control of Some Parabolic Partial Differential Equations Arising in Economics JO - Serdica Mathematical Journal PY - 2013 SP - 331 EP - 354 VL - 39 IS - 3-4 UR - http://geodesic.mathdoc.fr/item/SMJ2_2013_39_3-4_a8/ LA - en ID - SMJ2_2013_39_3-4_a8 ER -
%0 Journal Article %A Boucekkine, R. %A Camacho, C. %A Fabbri, G. %T On the Optimal Control of Some Parabolic Partial Differential Equations Arising in Economics %J Serdica Mathematical Journal %D 2013 %P 331-354 %V 39 %N 3-4 %U http://geodesic.mathdoc.fr/item/SMJ2_2013_39_3-4_a8/ %G en %F SMJ2_2013_39_3-4_a8
Boucekkine, R.; Camacho, C.; Fabbri, G. On the Optimal Control of Some Parabolic Partial Differential Equations Arising in Economics. Serdica Mathematical Journal, Tome 39 (2013) no. 3-4, pp. 331-354. http://geodesic.mathdoc.fr/item/SMJ2_2013_39_3-4_a8/