Classical Hermite and Laguerre Polynomials and the zero-distribution of Riemann's ζ-function
Serdica Mathematical Journal, Tome 39 (2013) no. 2, pp. 103-118
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
Necessary and sufficient conditions for absence of zeros of the function ζ(s), s=σ+it, in the half-plane σ>θ, 1/2≤θ1 are proposed in terms of representations of holomorphic functions by series in Hermite and Laguerre polynomials as well as in terms of Fourier and Hankel integral transforms. 2010 Mathematics Subject Classification: 11M26, 33C45, 42A38.
Keywords:
Hermite polynomials, Laguerre polynomials, holomorphic extension, Riemann’s hypothesis
@article{SMJ2_2013_39_2_a2,
author = {Rusev, Peter},
title = {Classical {Hermite} and {Laguerre} {Polynomials} and the zero-distribution of {Riemann's} \ensuremath{\zeta}-function},
journal = {Serdica Mathematical Journal},
pages = {103--118},
year = {2013},
volume = {39},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2013_39_2_a2/}
}
Rusev, Peter. Classical Hermite and Laguerre Polynomials and the zero-distribution of Riemann's ζ-function. Serdica Mathematical Journal, Tome 39 (2013) no. 2, pp. 103-118. http://geodesic.mathdoc.fr/item/SMJ2_2013_39_2_a2/