Large and Moderate Deviation Principles for Recursive Kernel Density Estimators Defined by Stochastic Approximation Method
Serdica Mathematical Journal, Tome 39 (2013) no. 1, pp. 53-82.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper we prove large and moderate deviations principles for the recursive kernel estimators of a probability density function defined by the stochastic approximation algorithm introduced by Mokkadem et al.([10]. The stochastic approximation method for the estimation of a probability density. J. Statist. Plann. Inference 139 (2009), 2459–2478). We show that the estimator constructed using the stepsize which minimize the variance of the class of the recursive estimators defined in [10] gives the same pointwise LDP and MDP as the Rosenblatt kernel estimator. We provide results both for the pointwise and the uniform deviations.
Keywords: Density estimation, stochastic approximation algorithm, large and moderate deviations principles
@article{SMJ2_2013_39_1_a3,
     author = {Slaoui, Yousri},
     title = {Large and {Moderate} {Deviation} {Principles} for {Recursive} {Kernel} {Density} {Estimators} {Defined} by {Stochastic} {Approximation} {Method}},
     journal = {Serdica Mathematical Journal},
     pages = {53--82},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2013_39_1_a3/}
}
TY  - JOUR
AU  - Slaoui, Yousri
TI  - Large and Moderate Deviation Principles for Recursive Kernel Density Estimators Defined by Stochastic Approximation Method
JO  - Serdica Mathematical Journal
PY  - 2013
SP  - 53
EP  - 82
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2013_39_1_a3/
LA  - en
ID  - SMJ2_2013_39_1_a3
ER  - 
%0 Journal Article
%A Slaoui, Yousri
%T Large and Moderate Deviation Principles for Recursive Kernel Density Estimators Defined by Stochastic Approximation Method
%J Serdica Mathematical Journal
%D 2013
%P 53-82
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2013_39_1_a3/
%G en
%F SMJ2_2013_39_1_a3
Slaoui, Yousri. Large and Moderate Deviation Principles for Recursive Kernel Density Estimators Defined by Stochastic Approximation Method. Serdica Mathematical Journal, Tome 39 (2013) no. 1, pp. 53-82. http://geodesic.mathdoc.fr/item/SMJ2_2013_39_1_a3/