A survey on the kissing numbers
Serdica Mathematical Journal, Tome 38 (2012) no. 4, pp. 507-522.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The maximum possible number of non-overlapping unit spheres that can touch a unit sphere in n dimensions is called kissing number. The problem for finding kissing numbers is closely connected to the more general problems of finding bounds for spherical codes and sphere packings. We survey old and recent results on the kissing numbers keeping the generality of spherical codes. 2010 Mathematics Subject Classification: 52C17, 94B65.
Keywords: Sphere packing, kissing numbers, bounds for codes, linear programming
@article{SMJ2_2012_38_4_a6,
     author = {Boyvalenkov, Peter and Dodunekov, Stefan and Musin, Oleg},
     title = {A survey on the kissing numbers},
     journal = {Serdica Mathematical Journal},
     pages = {507--522},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2012_38_4_a6/}
}
TY  - JOUR
AU  - Boyvalenkov, Peter
AU  - Dodunekov, Stefan
AU  - Musin, Oleg
TI  - A survey on the kissing numbers
JO  - Serdica Mathematical Journal
PY  - 2012
SP  - 507
EP  - 522
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2012_38_4_a6/
LA  - en
ID  - SMJ2_2012_38_4_a6
ER  - 
%0 Journal Article
%A Boyvalenkov, Peter
%A Dodunekov, Stefan
%A Musin, Oleg
%T A survey on the kissing numbers
%J Serdica Mathematical Journal
%D 2012
%P 507-522
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2012_38_4_a6/
%G en
%F SMJ2_2012_38_4_a6
Boyvalenkov, Peter; Dodunekov, Stefan; Musin, Oleg. A survey on the kissing numbers. Serdica Mathematical Journal, Tome 38 (2012) no. 4, pp. 507-522. http://geodesic.mathdoc.fr/item/SMJ2_2012_38_4_a6/