Resonances of two-dimensional Schrödinger operators with strong magnetic fields
Serdica Mathematical Journal, Tome 38 (2012) no. 4, pp. 539-574.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The purpose of this paper is to study the Schrödinger operator P(B,w) = (Dx-By^2+Dy^2+w^2x^2+V(x,y),(x,y) О R^2, with the magnetic field B large enough and the constant w № 0 is fixed and proportional to the strength of the electric field. Under certain assumptions on the potential V, we prove the existence of resonances near Landau levels as B®Ґ. Moreover, we show that the width of resonances is of size O(B^-Ґ).
Keywords: Schrödinger Operator, Strong Magnetic Field, Resonances, Resonance Width
@article{SMJ2_2012_38_4_a1,
     author = {Duong, Anh Tuan},
     title = {Resonances of two-dimensional {Schr\"odinger} operators with strong magnetic fields},
     journal = {Serdica Mathematical Journal},
     pages = {539--574},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2012_38_4_a1/}
}
TY  - JOUR
AU  - Duong, Anh Tuan
TI  - Resonances of two-dimensional Schrödinger operators with strong magnetic fields
JO  - Serdica Mathematical Journal
PY  - 2012
SP  - 539
EP  - 574
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2012_38_4_a1/
LA  - en
ID  - SMJ2_2012_38_4_a1
ER  - 
%0 Journal Article
%A Duong, Anh Tuan
%T Resonances of two-dimensional Schrödinger operators with strong magnetic fields
%J Serdica Mathematical Journal
%D 2012
%P 539-574
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2012_38_4_a1/
%G en
%F SMJ2_2012_38_4_a1
Duong, Anh Tuan. Resonances of two-dimensional Schrödinger operators with strong magnetic fields. Serdica Mathematical Journal, Tome 38 (2012) no. 4, pp. 539-574. http://geodesic.mathdoc.fr/item/SMJ2_2012_38_4_a1/