Pancyclic Cayley Graphs
Serdica Mathematical Journal, Tome 38 (2012) no. 1-3, pp. 37-42.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Let Cay(G;S) denote the Cayley graph on a finite group G with connection set S. We extend two results about the existence of cycles in Cay(G;S) from cyclic groups to arbitrary finite Abelian groups when S is a “natural” set of generators for G.
Keywords: Cayley Graph, Pancyclic, Abelian Group
@article{SMJ2_2012_38_1-3_a2,
     author = {Parmenter, M. M.},
     title = {Pancyclic {Cayley} {Graphs}},
     journal = {Serdica Mathematical Journal},
     pages = {37--42},
     publisher = {mathdoc},
     volume = {38},
     number = {1-3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2012_38_1-3_a2/}
}
TY  - JOUR
AU  - Parmenter, M. M.
TI  - Pancyclic Cayley Graphs
JO  - Serdica Mathematical Journal
PY  - 2012
SP  - 37
EP  - 42
VL  - 38
IS  - 1-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2012_38_1-3_a2/
LA  - en
ID  - SMJ2_2012_38_1-3_a2
ER  - 
%0 Journal Article
%A Parmenter, M. M.
%T Pancyclic Cayley Graphs
%J Serdica Mathematical Journal
%D 2012
%P 37-42
%V 38
%N 1-3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2012_38_1-3_a2/
%G en
%F SMJ2_2012_38_1-3_a2
Parmenter, M. M. Pancyclic Cayley Graphs. Serdica Mathematical Journal, Tome 38 (2012) no. 1-3, pp. 37-42. http://geodesic.mathdoc.fr/item/SMJ2_2012_38_1-3_a2/