Central A-polynomials for the Grassmann Algebra
Serdica Mathematical Journal, Tome 38 (2012) no. 1-3, pp. 297-312
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
Let F be an algebraically closed field of characteristic 0, and let G be the infinite dimensional Grassmann (or exterior) algebra over F. In 2003 A. Henke and A. Regev started the study of the A-identities. They described the A-codimensions of G and conjectured a finite generating set of the A-identities for G. In 2008 D. Gonçalves and P. Koshlukov answered in the affirmative their conjecture. In this paper we describe the central A-polynomials for G.
Keywords:
A-Identity, Central A-Polynomial, Grassmann Algebra
@article{SMJ2_2012_38_1-3_a14,
author = {Pereira Brand\~ao Jr., Ant\^onio and Jos\'e Gon\c{c}alves, Dimas},
title = {Central {A-polynomials} for the {Grassmann} {Algebra}},
journal = {Serdica Mathematical Journal},
pages = {297--312},
year = {2012},
volume = {38},
number = {1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2012_38_1-3_a14/}
}
TY - JOUR AU - Pereira Brandão Jr., Antônio AU - José Gonçalves, Dimas TI - Central A-polynomials for the Grassmann Algebra JO - Serdica Mathematical Journal PY - 2012 SP - 297 EP - 312 VL - 38 IS - 1-3 UR - http://geodesic.mathdoc.fr/item/SMJ2_2012_38_1-3_a14/ LA - en ID - SMJ2_2012_38_1-3_a14 ER -
Pereira Brandão Jr., Antônio; José Gonçalves, Dimas. Central A-polynomials for the Grassmann Algebra. Serdica Mathematical Journal, Tome 38 (2012) no. 1-3, pp. 297-312. http://geodesic.mathdoc.fr/item/SMJ2_2012_38_1-3_a14/