Central A-polynomials for the Grassmann Algebra
Serdica Mathematical Journal, Tome 38 (2012) no. 1-3, pp. 297-312.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Let F be an algebraically closed field of characteristic 0, and let G be the infinite dimensional Grassmann (or exterior) algebra over F. In 2003 A. Henke and A. Regev started the study of the A-identities. They described the A-codimensions of G and conjectured a finite generating set of the A-identities for G. In 2008 D. Gonçalves and P. Koshlukov answered in the affirmative their conjecture. In this paper we describe the central A-polynomials for G.
Keywords: A-Identity, Central A-Polynomial, Grassmann Algebra
@article{SMJ2_2012_38_1-3_a14,
     author = {Pereira Brand\~ao Jr., Ant\^onio and Jos\'e Gon\c{c}alves, Dimas},
     title = {Central {A-polynomials} for the {Grassmann} {Algebra}},
     journal = {Serdica Mathematical Journal},
     pages = {297--312},
     publisher = {mathdoc},
     volume = {38},
     number = {1-3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2012_38_1-3_a14/}
}
TY  - JOUR
AU  - Pereira Brandão Jr., Antônio
AU  - José Gonçalves, Dimas
TI  - Central A-polynomials for the Grassmann Algebra
JO  - Serdica Mathematical Journal
PY  - 2012
SP  - 297
EP  - 312
VL  - 38
IS  - 1-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2012_38_1-3_a14/
LA  - en
ID  - SMJ2_2012_38_1-3_a14
ER  - 
%0 Journal Article
%A Pereira Brandão Jr., Antônio
%A José Gonçalves, Dimas
%T Central A-polynomials for the Grassmann Algebra
%J Serdica Mathematical Journal
%D 2012
%P 297-312
%V 38
%N 1-3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2012_38_1-3_a14/
%G en
%F SMJ2_2012_38_1-3_a14
Pereira Brandão Jr., Antônio; José Gonçalves, Dimas. Central A-polynomials for the Grassmann Algebra. Serdica Mathematical Journal, Tome 38 (2012) no. 1-3, pp. 297-312. http://geodesic.mathdoc.fr/item/SMJ2_2012_38_1-3_a14/