Asymptotic behaviour of Functional Identities
Serdica Mathematical Journal, Tome 38 (2012) no. 1-3, pp. 259-272
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
We calculate the asymptotics of functional codimensions fcn(A) and generalized functional codimensions gfc n (A) of an arbitrary not necessarily associative algebra A over a field F of any characteristic. Namely, fcn(A) ∼ gfcn(A) ∼ dim(A^2) · (dim A^n) as n → ∞ for any finite-dimensional algebra A. In particular, codimensions of functional and generalized functional identities satisfy the analogs of Amitsur’s and Regev’s conjectures. Also we precisely evaluate fcn(UT2(F)) = gfcn(UT2(F)) = 3^(n+1) − 2^(n+1).
Keywords:
Functional Identity, Generalized Functional Identity, Codimension, Growth, Algebra, Amitsur’s Conjecture, Regev’s Conjecture
@article{SMJ2_2012_38_1-3_a12,
author = {Gordienko, A. S.},
title = {Asymptotic behaviour of {Functional} {Identities}},
journal = {Serdica Mathematical Journal},
pages = {259--272},
year = {2012},
volume = {38},
number = {1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2012_38_1-3_a12/}
}
Gordienko, A. S. Asymptotic behaviour of Functional Identities. Serdica Mathematical Journal, Tome 38 (2012) no. 1-3, pp. 259-272. http://geodesic.mathdoc.fr/item/SMJ2_2012_38_1-3_a12/