Varieties of Superalgebras of Polynomial Growth
Serdica Mathematical Journal, Tome 38 (2012) no. 1-3, pp. 237-258.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Let V^gr be a variety of associative superalgebras over a field F of characteristic zero. It is well-known that V gr can have polynomial or exponential growth. Here we present some classification results on varieties of polynomial growth. In particular we classify the varieties of at most linear growth and all subvarieties of the varieties of almost polynomial growth.
Keywords: Polynomial Identity, Growth, Superalgebra
@article{SMJ2_2012_38_1-3_a11,
     author = {La Mattina, Daniela},
     title = {Varieties of {Superalgebras} of {Polynomial} {Growth}},
     journal = {Serdica Mathematical Journal},
     pages = {237--258},
     publisher = {mathdoc},
     volume = {38},
     number = {1-3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2012_38_1-3_a11/}
}
TY  - JOUR
AU  - La Mattina, Daniela
TI  - Varieties of Superalgebras of Polynomial Growth
JO  - Serdica Mathematical Journal
PY  - 2012
SP  - 237
EP  - 258
VL  - 38
IS  - 1-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2012_38_1-3_a11/
LA  - en
ID  - SMJ2_2012_38_1-3_a11
ER  - 
%0 Journal Article
%A La Mattina, Daniela
%T Varieties of Superalgebras of Polynomial Growth
%J Serdica Mathematical Journal
%D 2012
%P 237-258
%V 38
%N 1-3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2012_38_1-3_a11/
%G en
%F SMJ2_2012_38_1-3_a11
La Mattina, Daniela. Varieties of Superalgebras of Polynomial Growth. Serdica Mathematical Journal, Tome 38 (2012) no. 1-3, pp. 237-258. http://geodesic.mathdoc.fr/item/SMJ2_2012_38_1-3_a11/