Weyl Groups of Fine Gradings on Simple Lie Algebras of Types A, B, C and D
Serdica Mathematical Journal, Tome 38 (2012) no. 1-3, pp. 7-36
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
Given a grading Γ : L ⨁ = g ∈ G L g on a nonassociative algebra L by an abelian group G, we have two subgroups of Aut(L): the automorphisms that stabilize each component L g (as a subspace) and the automorphisms that permute the components. By the Weyl group of Γ we mean the quotient of the latter subgroup by the former. In the case of a Cartan decomposition of a semisimple complex Lie algebra, this is the automorphism group of the root system, i.e., the so-called extended Weyl group. A grading is called fine if it cannot be refined. We compute the Weyl groups of all fine gradings on simple Lie algebras of types A, B, C and D (except D 4) over an algebraically closed field of characteristic different from 2.
Keywords:
Graded Algebra, Fine Grading, Weyl Group, Simple Lie Algebra
@article{SMJ2_2012_38_1-3_a1,
author = {Elduque, Alberto and Kochetov, Mikhail},
title = {Weyl {Groups} of {Fine} {Gradings} on {Simple} {Lie} {Algebras} of {Types} {A,} {B,} {C} and {D}},
journal = {Serdica Mathematical Journal},
pages = {7--36},
year = {2012},
volume = {38},
number = {1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2012_38_1-3_a1/}
}
TY - JOUR AU - Elduque, Alberto AU - Kochetov, Mikhail TI - Weyl Groups of Fine Gradings on Simple Lie Algebras of Types A, B, C and D JO - Serdica Mathematical Journal PY - 2012 SP - 7 EP - 36 VL - 38 IS - 1-3 UR - http://geodesic.mathdoc.fr/item/SMJ2_2012_38_1-3_a1/ LA - en ID - SMJ2_2012_38_1-3_a1 ER -
Elduque, Alberto; Kochetov, Mikhail. Weyl Groups of Fine Gradings on Simple Lie Algebras of Types A, B, C and D. Serdica Mathematical Journal, Tome 38 (2012) no. 1-3, pp. 7-36. http://geodesic.mathdoc.fr/item/SMJ2_2012_38_1-3_a1/