(2,3)-generation of the groups PSL6(q)
Serdica Mathematical Journal, Tome 37 (2011) no. 4, pp. 365-370.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We prove that the group PSL6(q) is (2,3)-generated for any q. In fact, we provide explicit generators x and y of orders 2 and 3, respectively, for the group SL6(q).
Keywords: (2,3)-generated group
@article{SMJ2_2011_37_4_a8,
     author = {Tabakov, K. and Tchakerian, K.},
     title = {(2,3)-generation of the groups {PSL6(q)}},
     journal = {Serdica Mathematical Journal},
     pages = {365--370},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2011_37_4_a8/}
}
TY  - JOUR
AU  - Tabakov, K.
AU  - Tchakerian, K.
TI  - (2,3)-generation of the groups PSL6(q)
JO  - Serdica Mathematical Journal
PY  - 2011
SP  - 365
EP  - 370
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2011_37_4_a8/
LA  - en
ID  - SMJ2_2011_37_4_a8
ER  - 
%0 Journal Article
%A Tabakov, K.
%A Tchakerian, K.
%T (2,3)-generation of the groups PSL6(q)
%J Serdica Mathematical Journal
%D 2011
%P 365-370
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2011_37_4_a8/
%G en
%F SMJ2_2011_37_4_a8
Tabakov, K.; Tchakerian, K. (2,3)-generation of the groups PSL6(q). Serdica Mathematical Journal, Tome 37 (2011) no. 4, pp. 365-370. http://geodesic.mathdoc.fr/item/SMJ2_2011_37_4_a8/