On strongly regular graphs with m2 = qm3 and m3 = qm2
Serdica Mathematical Journal, Tome 37 (2011) no. 4, pp. 353-364.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We say that a regular graph G of order n and degree r і 1 (which is not the complete graph) is strongly regular if there exist non-negative integers t and q such that |SiЗSj| = t for any two adjacent vertices i and j, and |SiЗSj| = q for any two distinct non-adjacent vertices i and j, where Sk denotes the neighborhood of the vertex k. Let l1 = r, l2 and l3 be the distinct eigenvalues of a connected strongly regular graph. Let m1 = 1, m2 and m3 denote the multiplicity of r, l2 and l3, respectively. We here describe the parameters n, r, t and q for strongly regular graphs with m2 = qm3 and m3 = qm2 for q = 2, 3, 4.
Keywords: Strongly Regular Graph, Conference Graph, Integral Graph
@article{SMJ2_2011_37_4_a7,
     author = {Lepovic, Mirko},
     title = {On strongly regular graphs with m2 = qm3 and m3 = qm2},
     journal = {Serdica Mathematical Journal},
     pages = {353--364},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2011_37_4_a7/}
}
TY  - JOUR
AU  - Lepovic, Mirko
TI  - On strongly regular graphs with m2 = qm3 and m3 = qm2
JO  - Serdica Mathematical Journal
PY  - 2011
SP  - 353
EP  - 364
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2011_37_4_a7/
LA  - en
ID  - SMJ2_2011_37_4_a7
ER  - 
%0 Journal Article
%A Lepovic, Mirko
%T On strongly regular graphs with m2 = qm3 and m3 = qm2
%J Serdica Mathematical Journal
%D 2011
%P 353-364
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2011_37_4_a7/
%G en
%F SMJ2_2011_37_4_a7
Lepovic, Mirko. On strongly regular graphs with m2 = qm3 and m3 = qm2. Serdica Mathematical Journal, Tome 37 (2011) no. 4, pp. 353-364. http://geodesic.mathdoc.fr/item/SMJ2_2011_37_4_a7/