Double complexes and vanishing of Novikov cohomology
Serdica Mathematical Journal, Tome 37 (2011) no. 4, pp. 295-304.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We consider non-standard totalisation functors for double complexes, involving left or right truncated products. We show how properties of these imply that the algebraic mapping torus of a self map h of a cochain complex of finitely presented modules has trivial negative Novikov cohomology, and has trivial positive Novikov cohomology provided h is a quasi-isomorphism. As an application we obtain a new and transparent proof that a finitely dominated cochain complex over a Laurent polynomial ring has trivial (positive and negative) Novikov cohomology.
Keywords: Torus, Truncated Product, Double Complex, Finite Domination, Novikov Cohomology
@article{SMJ2_2011_37_4_a2,
     author = {H\"uttemann, Thomas},
     title = {Double complexes and vanishing of {Novikov} cohomology},
     journal = {Serdica Mathematical Journal},
     pages = {295--304},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2011_37_4_a2/}
}
TY  - JOUR
AU  - Hüttemann, Thomas
TI  - Double complexes and vanishing of Novikov cohomology
JO  - Serdica Mathematical Journal
PY  - 2011
SP  - 295
EP  - 304
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2011_37_4_a2/
LA  - en
ID  - SMJ2_2011_37_4_a2
ER  - 
%0 Journal Article
%A Hüttemann, Thomas
%T Double complexes and vanishing of Novikov cohomology
%J Serdica Mathematical Journal
%D 2011
%P 295-304
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2011_37_4_a2/
%G en
%F SMJ2_2011_37_4_a2
Hüttemann, Thomas. Double complexes and vanishing of Novikov cohomology. Serdica Mathematical Journal, Tome 37 (2011) no. 4, pp. 295-304. http://geodesic.mathdoc.fr/item/SMJ2_2011_37_4_a2/