Dirac type condition and Hamiltonian graphs
Serdica Mathematical Journal, Tome 37 (2011) no. 4, pp. 277-282.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In 1952, Dirac introduced the degree type condition and proved that if G is a connected graph of order n і 3 such that its minimum degree satisfies d(G) і n/2, then G is Hamiltonian. In this paper we investigate a further condition and prove that if G is a connected graph of order n і 3 such that d(G) і (n-2)/2, then G is Hamiltonian or G belongs to four classes of well-structured exceptional graphs.
Keywords: Type Condition, Sufficient Condition, Hamiltonian Graph
@article{SMJ2_2011_37_4_a0,
     author = {Zhao, Kewen},
     title = {Dirac type condition and {Hamiltonian} graphs},
     journal = {Serdica Mathematical Journal},
     pages = {277--282},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2011_37_4_a0/}
}
TY  - JOUR
AU  - Zhao, Kewen
TI  - Dirac type condition and Hamiltonian graphs
JO  - Serdica Mathematical Journal
PY  - 2011
SP  - 277
EP  - 282
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2011_37_4_a0/
LA  - en
ID  - SMJ2_2011_37_4_a0
ER  - 
%0 Journal Article
%A Zhao, Kewen
%T Dirac type condition and Hamiltonian graphs
%J Serdica Mathematical Journal
%D 2011
%P 277-282
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2011_37_4_a0/
%G en
%F SMJ2_2011_37_4_a0
Zhao, Kewen. Dirac type condition and Hamiltonian graphs. Serdica Mathematical Journal, Tome 37 (2011) no. 4, pp. 277-282. http://geodesic.mathdoc.fr/item/SMJ2_2011_37_4_a0/