Optimal investment under stochastic volatility and power type utility function
Serdica Mathematical Journal, Tome 37 (2011) no. 3, pp. 237-250
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
In this work we will study a problem of optimal investment in financial markets with stochastic volatility with small parameter. We used the averaging method of Bogoliubov for limited development for the optimal strategies when the small parameter of the model tends to zero and the limit for the optimal strategy and demonstrated the convergence of these optimal strategies.
Keywords:
Hamilton-Jacobi-Bellman Equation, Invariant Measure, Mean-Reverting Process, Optimal Stochastic Control, Stochastic Volatility
@article{SMJ2_2011_37_3_a4,
author = {Benchaabane, Abbes and Benchettah, Azzedine},
title = {Optimal investment under stochastic volatility and power type utility function},
journal = {Serdica Mathematical Journal},
pages = {237--250},
year = {2011},
volume = {37},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2011_37_3_a4/}
}
TY - JOUR AU - Benchaabane, Abbes AU - Benchettah, Azzedine TI - Optimal investment under stochastic volatility and power type utility function JO - Serdica Mathematical Journal PY - 2011 SP - 237 EP - 250 VL - 37 IS - 3 UR - http://geodesic.mathdoc.fr/item/SMJ2_2011_37_3_a4/ LA - en ID - SMJ2_2011_37_3_a4 ER -
Benchaabane, Abbes; Benchettah, Azzedine. Optimal investment under stochastic volatility and power type utility function. Serdica Mathematical Journal, Tome 37 (2011) no. 3, pp. 237-250. http://geodesic.mathdoc.fr/item/SMJ2_2011_37_3_a4/