On realizability of p-groups as Galois groups
Serdica Mathematical Journal, Tome 37 (2011) no. 3, pp. 173-210.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this article we survey and examine the realizability of p-groups as Galois groups over arbitrary fields. In particular we consider various cohomological criteria that lead to necessary and sufficient conditions for the realizability of such a group as a Galois group, the embedding problem (i.e., realizability over a given subextension), descriptions of such extensions, automatic realizations among p-groups, and related topics.
Keywords: Inverse Problem, Embedding Problem, Galois Group, p-Group, Kummer Extension, Corestriction, Orthogonal Representation, Clifford Algebra, Spinor, Modular Group, Dihedral Group, Quaternion Group, Galois Cohomology
@article{SMJ2_2011_37_3_a0,
     author = {Michailov, Ivo M. and Ziapkov, Nikola P.},
     title = {On realizability of p-groups as {Galois} groups},
     journal = {Serdica Mathematical Journal},
     pages = {173--210},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2011_37_3_a0/}
}
TY  - JOUR
AU  - Michailov, Ivo M.
AU  - Ziapkov, Nikola P.
TI  - On realizability of p-groups as Galois groups
JO  - Serdica Mathematical Journal
PY  - 2011
SP  - 173
EP  - 210
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2011_37_3_a0/
LA  - en
ID  - SMJ2_2011_37_3_a0
ER  - 
%0 Journal Article
%A Michailov, Ivo M.
%A Ziapkov, Nikola P.
%T On realizability of p-groups as Galois groups
%J Serdica Mathematical Journal
%D 2011
%P 173-210
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2011_37_3_a0/
%G en
%F SMJ2_2011_37_3_a0
Michailov, Ivo M.; Ziapkov, Nikola P. On realizability of p-groups as Galois groups. Serdica Mathematical Journal, Tome 37 (2011) no. 3, pp. 173-210. http://geodesic.mathdoc.fr/item/SMJ2_2011_37_3_a0/