The Direct and Inverse Spectral Problems for some Banded Matrices
Serdica Mathematical Journal, Tome 37 (2011) no. 1, pp. 9-24
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
In this paper we introduced a notion of the generalized spectral function for a matrix J = (gk,l)k,l = 0 Ґ, gk,l О C, such that gk,l = 0, if |k-l | > N; gk,k+N = 1, and gk,k-N № 0. Here N is a fixed positive integer. The direct and inverse spectral problems for such matrices are stated and solved. An integral representation for the generalized spectral function is obtained.
Keywords:
Banded Matrix, Spectral Function, Polynomials
@article{SMJ2_2011_37_1_a1,
author = {Zagorodnyuk, S. M.},
title = {The {Direct} and {Inverse} {Spectral} {Problems} for some {Banded} {Matrices}},
journal = {Serdica Mathematical Journal},
pages = {9--24},
publisher = {mathdoc},
volume = {37},
number = {1},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2011_37_1_a1/}
}
Zagorodnyuk, S. M. The Direct and Inverse Spectral Problems for some Banded Matrices. Serdica Mathematical Journal, Tome 37 (2011) no. 1, pp. 9-24. http://geodesic.mathdoc.fr/item/SMJ2_2011_37_1_a1/