On Differential Inclusions with Unbounded Right-Hand Side
Serdica Mathematical Journal, Tome 37 (2011) no. 1, pp. 1-8.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The classical Filippov's Theorem on existence of a local trajectory of the differential inclusion [dot x](t) О F(t,x(t)) requires the right-hand side F(·,·) to be Lipschitzian with respect to the Hausdorff distance and then to be bounded-valued. We give an extension of the quoted result under a weaker assumption, used by Ioffe in [J. Convex Anal. 13 (2006), 353-362], allowing unbounded right-hand side.
Keywords: Fixed Point, Differential Inclusin, Multifunction, Measurable Selection, Pseudo-Lipchitzness
@article{SMJ2_2011_37_1_a0,
     author = {Benahmed, S.},
     title = {On {Differential} {Inclusions} with {Unbounded} {Right-Hand} {Side}},
     journal = {Serdica Mathematical Journal},
     pages = {1--8},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2011_37_1_a0/}
}
TY  - JOUR
AU  - Benahmed, S.
TI  - On Differential Inclusions with Unbounded Right-Hand Side
JO  - Serdica Mathematical Journal
PY  - 2011
SP  - 1
EP  - 8
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2011_37_1_a0/
LA  - en
ID  - SMJ2_2011_37_1_a0
ER  - 
%0 Journal Article
%A Benahmed, S.
%T On Differential Inclusions with Unbounded Right-Hand Side
%J Serdica Mathematical Journal
%D 2011
%P 1-8
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2011_37_1_a0/
%G en
%F SMJ2_2011_37_1_a0
Benahmed, S. On Differential Inclusions with Unbounded Right-Hand Side. Serdica Mathematical Journal, Tome 37 (2011) no. 1, pp. 1-8. http://geodesic.mathdoc.fr/item/SMJ2_2011_37_1_a0/