On Differential Inclusions with Unbounded Right-Hand Side
Serdica Mathematical Journal, Tome 37 (2011) no. 1, pp. 1-8
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
The classical Filippov's Theorem on existence of a local trajectory of the differential inclusion [dot x](t) О F(t,x(t)) requires the right-hand side F(·,·) to be Lipschitzian with respect to the Hausdorff distance and then to be bounded-valued. We give an extension of the quoted result under a weaker assumption, used by Ioffe in [J. Convex Anal. 13 (2006), 353-362], allowing unbounded right-hand side.
Keywords:
Fixed Point, Differential Inclusin, Multifunction, Measurable Selection, Pseudo-Lipchitzness
@article{SMJ2_2011_37_1_a0,
author = {Benahmed, S.},
title = {On {Differential} {Inclusions} with {Unbounded} {Right-Hand} {Side}},
journal = {Serdica Mathematical Journal},
pages = {1--8},
year = {2011},
volume = {37},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2011_37_1_a0/}
}
Benahmed, S. On Differential Inclusions with Unbounded Right-Hand Side. Serdica Mathematical Journal, Tome 37 (2011) no. 1, pp. 1-8. http://geodesic.mathdoc.fr/item/SMJ2_2011_37_1_a0/