Dense Subdifferentiability and Trustworthiness for Arbitrary Subdifferentials
Serdica Mathematical Journal, Tome 35 (2010) no. 4, pp. 387-402
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
We show that the properties of dense subdifferentiability and of trustworthiness are equivalent for any subdifferential satisfying a small set of natural axioms. The proof relies on a remarkable property of the subdifferential of the inf-convolution of two (non necessarily convex) functions. We also show the equivalence of the dense subdifferentiability property with other basic properties of subdifferentials such as a weak* Lipschitz Separation property, a strong Compact Separation property and a Minimal property for the analytic approximate subdifferential of Ioffe.
Keywords:
Lower Semicontinuous Function, Inf-convolution, Subdifferential, Approximate Sum Rule, Asplund Space, Subdifferentiability Space, Trustworthy Space, Variational Analysis
@article{SMJ2_2010_35_4_a3,
author = {Jules, Florence and Lassonde, Marc},
title = {Dense {Subdifferentiability} and {Trustworthiness} for {Arbitrary} {Subdifferentials}},
journal = {Serdica Mathematical Journal},
pages = {387--402},
year = {2010},
volume = {35},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2010_35_4_a3/}
}
TY - JOUR AU - Jules, Florence AU - Lassonde, Marc TI - Dense Subdifferentiability and Trustworthiness for Arbitrary Subdifferentials JO - Serdica Mathematical Journal PY - 2010 SP - 387 EP - 402 VL - 35 IS - 4 UR - http://geodesic.mathdoc.fr/item/SMJ2_2010_35_4_a3/ LA - en ID - SMJ2_2010_35_4_a3 ER -
Jules, Florence; Lassonde, Marc. Dense Subdifferentiability and Trustworthiness for Arbitrary Subdifferentials. Serdica Mathematical Journal, Tome 35 (2010) no. 4, pp. 387-402. http://geodesic.mathdoc.fr/item/SMJ2_2010_35_4_a3/