Plus-Minus Property as a Generalization of the Daugavet Property
Serdica Mathematical Journal, Tome 35 (2010) no. 4, pp. 371-386
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
It was shown in [2] that the most natural equalities valid for every rank-one operator T in real Banach spaces lead either to the Daugavet equation ||I+T|| = 1 + ||T|| or to the equation ||I − T|| = ||I+T||. We study if the spaces where the latter condition is satisfied for every finite-rank operator inherit the properties of Daugavet spaces.
Keywords:
Daugavet Equation, Operator Norm, Unital Banach Algebra
@article{SMJ2_2010_35_4_a2,
author = {Shepelska, Varvara},
title = {Plus-Minus {Property} as a {Generalization} of the {Daugavet} {Property}},
journal = {Serdica Mathematical Journal},
pages = {371--386},
year = {2010},
volume = {35},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2010_35_4_a2/}
}
Shepelska, Varvara. Plus-Minus Property as a Generalization of the Daugavet Property. Serdica Mathematical Journal, Tome 35 (2010) no. 4, pp. 371-386. http://geodesic.mathdoc.fr/item/SMJ2_2010_35_4_a2/