Low Volatility Options and Numerical Diffusion of Finite Difference Schemes
Serdica Mathematical Journal, Tome 35 (2010) no. 3, pp. 223-236
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
In this paper we explore the numerical diffusion introduced by two nonstandard finite difference schemes applied to the Black-Scholes partial differential equation for pricing discontinuous payoff and low volatility options. Discontinuities in the initial conditions require applying nonstandard non-oscillating finite difference schemes such as the exponentially fitted finite difference schemes suggested by D. Duffy and the Crank-Nicolson variant scheme of Milev-Tagliani. We present a short survey of these two schemes, investigate the origin of the respective artificial numerical diffusion and demonstrate how it could be diminished.
Keywords:
Numerical Diffusion, Spurious Oscillations, Black-Scholes Equation, Low Volatility Options, Finite Difference Schemes, Non-Smooth Initial Conditions
@article{SMJ2_2010_35_3_a1,
author = {Milev, Mariyan and Tagliani, Aldo},
title = {Low {Volatility} {Options} and {Numerical} {Diffusion} of {Finite} {Difference} {Schemes}},
journal = {Serdica Mathematical Journal},
pages = {223--236},
publisher = {mathdoc},
volume = {35},
number = {3},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2010_35_3_a1/}
}
TY - JOUR AU - Milev, Mariyan AU - Tagliani, Aldo TI - Low Volatility Options and Numerical Diffusion of Finite Difference Schemes JO - Serdica Mathematical Journal PY - 2010 SP - 223 EP - 236 VL - 35 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SMJ2_2010_35_3_a1/ LA - en ID - SMJ2_2010_35_3_a1 ER -
Milev, Mariyan; Tagliani, Aldo. Low Volatility Options and Numerical Diffusion of Finite Difference Schemes. Serdica Mathematical Journal, Tome 35 (2010) no. 3, pp. 223-236. http://geodesic.mathdoc.fr/item/SMJ2_2010_35_3_a1/