Low Volatility Options and Numerical Diffusion of Finite Difference Schemes
Serdica Mathematical Journal, Tome 35 (2010) no. 3, pp. 223-236
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
In this paper we explore the numerical diffusion introduced by two nonstandard finite difference schemes applied to the Black-Scholes partial differential equation for pricing discontinuous payoff and low volatility options. Discontinuities in the initial conditions require applying nonstandard non-oscillating finite difference schemes such as the exponentially fitted finite difference schemes suggested by D. Duffy and the Crank-Nicolson variant scheme of Milev-Tagliani. We present a short survey of these two schemes, investigate the origin of the respective artificial numerical diffusion and demonstrate how it could be diminished.
Keywords:
Numerical Diffusion, Spurious Oscillations, Black-Scholes Equation, Low Volatility Options, Finite Difference Schemes, Non-Smooth Initial Conditions
@article{SMJ2_2010_35_3_a1,
author = {Milev, Mariyan and Tagliani, Aldo},
title = {Low {Volatility} {Options} and {Numerical} {Diffusion} of {Finite} {Difference} {Schemes}},
journal = {Serdica Mathematical Journal},
pages = {223--236},
year = {2010},
volume = {35},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2010_35_3_a1/}
}
Milev, Mariyan; Tagliani, Aldo. Low Volatility Options and Numerical Diffusion of Finite Difference Schemes. Serdica Mathematical Journal, Tome 35 (2010) no. 3, pp. 223-236. http://geodesic.mathdoc.fr/item/SMJ2_2010_35_3_a1/