A Note on the L2-norm of the Second Fundamental Form of Algebraic Manifolds
Serdica Mathematical Journal, Tome 35 (2010) no. 1, pp. 67-74.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Let M f → CP^n be an algebraic manifold of complex dimension d and let σf be its second fundamental form. In this paper we address the following conjecture, which is the analogue of the one stated by M. Gromov for smooth immersions: ... We prove the conjecture in the following three cases: (i) d = 1; (ii) M is a complete intersection; (iii) the scalar curvature of M is constant.
Keywords: Kähler Metrics, Holomorphic Maps Into Projective Space, Algebraic Manifolds, Degree
@article{SMJ2_2010_35_1_a3,
     author = {Loi, Andrea and Zedda, Michela},
     title = {A {Note} on the {L2-norm} of the {Second} {Fundamental} {Form} of {Algebraic} {Manifolds}},
     journal = {Serdica Mathematical Journal},
     pages = {67--74},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2010_35_1_a3/}
}
TY  - JOUR
AU  - Loi, Andrea
AU  - Zedda, Michela
TI  - A Note on the L2-norm of the Second Fundamental Form of Algebraic Manifolds
JO  - Serdica Mathematical Journal
PY  - 2010
SP  - 67
EP  - 74
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2010_35_1_a3/
LA  - en
ID  - SMJ2_2010_35_1_a3
ER  - 
%0 Journal Article
%A Loi, Andrea
%A Zedda, Michela
%T A Note on the L2-norm of the Second Fundamental Form of Algebraic Manifolds
%J Serdica Mathematical Journal
%D 2010
%P 67-74
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2010_35_1_a3/
%G en
%F SMJ2_2010_35_1_a3
Loi, Andrea; Zedda, Michela. A Note on the L2-norm of the Second Fundamental Form of Algebraic Manifolds. Serdica Mathematical Journal, Tome 35 (2010) no. 1, pp. 67-74. http://geodesic.mathdoc.fr/item/SMJ2_2010_35_1_a3/