Semi-Symmetric Algebras: General Constructions. Part II
Serdica Mathematical Journal, Tome 35 (2010) no. 1, pp. 39-66.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In [3] we present the construction of the semi-symmetric algebra [χ](E) of a module E over a commutative ring K with unit, which generalizes the tensor algebra T(E), the symmetric algebra S(E), and the exterior algebra ∧(E), deduce some of its functorial properties, and prove a classification theorem. In the present paper we continue the study of the semi-symmetric algebra and discuss its graded dual, the corresponding canonical bilinear form, its coalgebra structure, as well as left and right inner products. Here we present a unified treatment of these topics whose exposition in [2, A.III] is made simultaneously for the above three particular (and, without a shadow of doubt - most important) cases.
Keywords: Semi-Symmetric Power, Semi-Symmetric Algebra, Coalgebra Structure, Inner Product
@article{SMJ2_2010_35_1_a2,
     author = {Iliev, Valentin Vankov},
     title = {Semi-Symmetric {Algebras:} {General} {Constructions.} {Part} {II}},
     journal = {Serdica Mathematical Journal},
     pages = {39--66},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2010_35_1_a2/}
}
TY  - JOUR
AU  - Iliev, Valentin Vankov
TI  - Semi-Symmetric Algebras: General Constructions. Part II
JO  - Serdica Mathematical Journal
PY  - 2010
SP  - 39
EP  - 66
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2010_35_1_a2/
LA  - en
ID  - SMJ2_2010_35_1_a2
ER  - 
%0 Journal Article
%A Iliev, Valentin Vankov
%T Semi-Symmetric Algebras: General Constructions. Part II
%J Serdica Mathematical Journal
%D 2010
%P 39-66
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2010_35_1_a2/
%G en
%F SMJ2_2010_35_1_a2
Iliev, Valentin Vankov. Semi-Symmetric Algebras: General Constructions. Part II. Serdica Mathematical Journal, Tome 35 (2010) no. 1, pp. 39-66. http://geodesic.mathdoc.fr/item/SMJ2_2010_35_1_a2/